Objective: To examine the expression and regulation of fibronectin type III domain-containing protein 5/irisin (FNDC5/irisin) in primary human periodontal ligament (hPDL) cells, dental pulp stem cells (hDPCs) and osteoblasts (hOBs).

Methods: FNDC5/irisin was identified in sections of paraffin embedded rat maxillae, cryo-sections of 3D cultured spheroids hPDL cells, hDPCs and hOBs, 2D cultured hPDL cells, hDPCs and hOBs by immunohistochemistry. The expression of FNDC5/irisin was identified by qPCR, followed by sequencing of the qPCR product. Regulation of FNDC5/irisin expression in hPDL cells, hDPCs and hOBs were evaluated after administration of different concentrations of irisin and all-trans retinoic acid (ATRA). qPCR and ELISA were used to identify expression and secretion of FNDC5/irisin in odontoblast-like differentiation of hDPCs.

Results: FNDC5/irisin was confirmed to be present in rat periodontium and dental pulp regions, as well as in 2D and 3D cultured hPDL cells, hDPCs and hOBs. BLAST analyses verified the generated nucleotide alignments matched human FNDC5/irisin. FNDC5/irisin gene expression was enhanced during odontoblast-like differentiation of hDPCs whereas the secretion of the protein was decreased compared to control. The protein signals in rat periodontal and pulpal tissues were higher than that of alveolar bone, and the expression of FNDC5/irisin was differently regulated by recombinant irisin and ATRA in hPDL cells and hDPCs compared to hOBs.

Conclusions: FNDC5/irisin expression was verified in rodent periodontium and dental pulp, and in hPDL cells, hDPCs and hOBs. The FNDC5/irisin expression was regulated by recombinant irisin and ATRA. Finally, expression and secretion of FNDC5/irisin were affected during odontoblast-like differentiation of hDPCs.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.archoralbio.2021.105061DOI Listing

Publication Analysis

Top Keywords

hpdl cells
28
cells hdpcs
28
hdpcs hobs
20
dental pulp
16
fndc5/irisin
13
fndc5/irisin expression
12
odontoblast-like differentiation
12
cells
10
expression
9
hdpcs
9

Similar Publications

Potential of Trilayered Gelatin/Polycaprolactone Nanofibers for Periodontal Regeneration: An In Vitro Study.

Int J Mol Sci

January 2025

Division of Conservative Dentistry and Periodontology, University Clinic of Dentistry, Medical University of Vienna, 1090 Vienna, Austria.

Over the past few years, biomaterial-based periodontal tissue engineering has gained popularity. An ideal biomaterial for treating periodontal defects is expected to stimulate periodontal-derived cells, allowing them to contribute most efficiently to tissue reconstruction. The present study focuses on evaluating the in vitro behavior of human periodontal ligament-derived stromal cells (hPDL-MSCs) when cultured on gelatin/Polycaprolactone prototype (GPP) and volume-stable collagen matrix (VSCM).

View Article and Find Full Text PDF

FGF and TGF-β Growth Factor Isoform Modulation of Human Gingival and Periodontal Ligament Fibroblast Wound Healing Phenotype.

Matrix Biol

January 2025

Department of Anatomy and Cell Biology, Dentistry, Schulich School of Medicine and Dentistry, Western University, London, Ontario, N6A 3K7, Canada; Dentistry, Schulich School of Medicine and Dentistry, Western University, London, Ontario, N6A 3K7, Canada. Electronic address:

Release of growth factors in the tissue microenvironment is a critical process in the repair and regeneration of periodontal tissues, regulating fibroblast behavior and phenotype. As a result of the complex architecture of the periodontium, distinct fibroblast populations in the periodontal ligament and gingival connective tissue exist in close proximity. Growth factor therapies for periodontal regeneration have gained traction, but quantification of their effects on multiple different fibroblast populations that are required for repair has been poorly investigated.

View Article and Find Full Text PDF

Effect of Mechanical Force Stress on the Inflammatory Response in Human Periodontal Ligament Cells.

Int Dent J

February 2025

Center of Excellence for Dental Stem Cell Biology, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand; Faculty of Dentistry, Department of Anatomy, Chulalongkorn University, Bangkok, Thailand.

Human periodontal ligament (hPDL) is continuously exposed to mechanical forces that can induce inflammatory responses in resident stem cells (hPDLSCs). Here, we review the impact of mechanical force on hPDLSCs, focusing on the activation of inflammatory cytokines and related signalling pathways, which subsequently influence periodontal tissue remodelling. The effects of various mechanical forces, including compressive, shear, and tensile forces, on hPDLSCs are discussed.

View Article and Find Full Text PDF

Recent studies have shown that homozygous and compound heterozygous variants in the 4-hydroxyphenylpyruvate dioxygenase-like (HPDL) gene contribute to a novel early onset neurodevelopmental disorder with progressive spasticity and brain white matter abnormalities (NEDSWMA), a severe neurodevelopmental disorder characterized by impaired psychomotor development in infancy. Using whole-exome sequencing and Sanger sequencing, we identified and verified a novel compound heterozygous variant in HPDL, c.502 T > C (p.

View Article and Find Full Text PDF

Generation and Characterization of hiPS Lines from Three Patients Affected by Different Forms of -Related Neurological Disorders.

Int J Mol Sci

October 2024

Molecular Medicine for Neurodegenerative and Neuromuscular Diseases Unit, IRCCS Fondazione Stella Maris, Via dei Giacinti 2, Calambrone, 56128 Pisa, Italy.

Hereditary spastic paraplegias are rare genetic disorders characterized by corticospinal tract impairment. Spastic paraplegia 83 (SPG83) is associated with biallelic mutations in the gene, leading to varied severities from neonatal to juvenile onset. The function of HPDL is unclear, though it is speculated to play a role in alternative coenzyme Q10 biosynthesis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!