A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Degradation behaviors and in-vivo biocompatibility of a rare earth- and aluminum-free magnesium-based stent. | LitMetric

Biodegradable stents can provide scaffolding and anti-restenosis benefits in the short term and then gradually disappear over time to free the vessel, among which the Mg-based biodegradable metal stents have been prosperously developed. In the present study, a Mg-8.5Li (wt.%) alloy (RE- and Al-free) with high ductility (> 40%) was processed into mini-tubes, and further fabricated into finished stent through laser cutting and electropolishing. In-vitro degradation test was performed to evaluate the durability of this stent before and after balloon dilation. The influence of plastic deformation and residual stress (derived from the dilation process) on the degradation was checked with the assistance of finite element analysis. In addition, in-vivo degradation behaviors and biocompatibility of the stent were evaluated by performing implantation in iliac artery of minipigs. The balloon dilation process did not lead to deteriorated degradation, and this stent exhibited a decent degradation rate (0.15 mm/y) in vitro, but divergent result (> 0.6 mm/y) was found in vivo. The stent was almost completely degraded in 3 months, revealing an insufficient scaffolding time. Meanwhile, it did not induce possible thrombus, and it was tolerable by surrounding tissues in pigs. Besides, endothelial coverage in 1 month was achieved even under the severe degradation condition. In the end, the feasibility of this stent for treatment of benign vascular stenosis was generally discussed, and perspectives on future improvement of Mg-Li-based stents were proposed.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.actbio.2021.01.031DOI Listing

Publication Analysis

Top Keywords

degradation behaviors
8
balloon dilation
8
dilation process
8
degradation
7
stent
7
behaviors in-vivo
4
in-vivo biocompatibility
4
biocompatibility rare
4
rare earth-
4
earth- aluminum-free
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!