Biofilm mediated infection caused by multi-drug resistant bacteria are difficult to treat since it protects the microorganisms by host defense system, making them resistant to antibiotics and other antimicrobial agents. Combating such type of nosocomial infection, especially in immunocompromised patients, is an urgent need and foremost challenge faced by clinicians. Therefore, antimicrobial photodynamic therapy (aPDT) has been intensely pursued as an alternative therapy for bacterial infections. aPDT leads to the generation of reactive oxygen species (ROS) that destroy bacterial cells in the presence of a photosensitizer, visible light and oxygen. Here, we elucidated a possibility of its clinical application by reducing the treatment time and exposing curcumin to 20 J/cm of blue laser light, which corresponds to only 52 s to counteract vancomycin resistant Staphylococcus aureus (VRSA) both in vitro and in vivo. To understand the mechanism of action, the generation of total reactive oxygen species (ROS) was quantified by 2'-7'-dichlorofluorescein diacetate (DCFH-DA) and the type of phototoxicity was confirmed by fluorescence spectroscopic analysis. The data showed more production of singlet oxygen, indicating type-II phototoxicity. Different anti-biofilm assays (crystal violet and congo red assays) and microscopic studies were performed at sub-MIC concentration of curcumin followed by treatment with laser light against preformed biofilm of VRSA. The result showed significant reduction in the preformed biofilm formation. Finally, its therapeutic potential was validated in skin abrasion wistar rat model. The result showed significant inhibition of bacterial growth. Furthermore, immunomodulatory analysis with rat serum was performed. A significant reduction in expression of proinflammatory cytokines TNF-α and IL-6 were observed. Hence, we conclude that curcumin mediated aPDT with 20 J/cm of blue laser treatment (for 52 s) could be used against multi-drug resistant bacterial infections and preformed biofilm formation as a potential therapeutic approach.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ejpb.2021.01.012DOI Listing

Publication Analysis

Top Keywords

preformed biofilm
12
photodynamic therapy
8
vancomycin resistant
8
resistant staphylococcus
8
staphylococcus aureus
8
aureus vrsa
8
vitro vivo
8
multi-drug resistant
8
bacterial infections
8
reactive oxygen
8

Similar Publications

Antimicrobial peptides (AMPs) are promising agents for treating antibiotic-resistant bacterial infections. Although discovering novel AMPs is crucial for combating multidrug-resistant bacteria and biofilm-related infections, their clinical potential relies on precise, real-time evaluation of efficacy, toxicity, and mechanisms. Optical diffraction tomography (ODT), a label-free imaging technology, enables real-time visualization of bacterial morphological changes, membrane damage, and biofilm formation over time.

View Article and Find Full Text PDF

Discovery of new aliphatic metabolites with antibacterial activities from a soil-derived Streptomyces antifungus.

Fitoterapia

January 2025

Institute of Microbial Pharmaceuticals, College of Life and Health Sciences, Northeastern University, Shenyang 110819, China; Key Laboratory of Bioresource Research and Development of Liaoning Province, College of Life and Health Sciences, Northeastern University, Shenyang 110819, China. Electronic address:

Fifteen new aliphatic metabolites, 2-methylpyrimidin-4(3H)-ones (1,2), 2-methoxy-2-methyl-1,2-dihydro-3H-pyrrol-3-ones (4a/4b, 5a/5b), butyrolactones (6-9), and aliphatic metabolites (16-20) as well as known pyridin-2(1H)-one (3) and butyrolactone analogues (10-15) were obtained from the fermentation broth of Streptomyces antifungus isolated from the forest soil sample collected in Tengchong, China. Pyrimidin-4(3H)-one derivatives (1, 2) with an individual 2-methylpyrimidin-4(3H)-one skeleton is a kind of rarely reported compound and were firstly obtained from natural source. The structures of the new metabolites were elucidated by comprehensive spectroscopic analysis including data from experimental and calculated ECD spectra as well as Mosher's reagent derivative method.

View Article and Find Full Text PDF

Growing interests in replacing conventional preservatives and antibiotics in food and pharmaceutical industries have driven the exploration of bacterial metabolites, especially those from strains with generally recognized as safe (GRAS) status, such as lactic acid bacteria (LAB). In this study, a supernatant cocktail derived from multiple LAB strains was prepared and its bioactivities-antimicrobial, antibiofilm, antioxidant, cytotoxicity, and stability-were thoroughly investigated. The cocktail's main components were identified using thermal and protease treatments, gas chromatography coupled to mass spectrometry (GC-MS), and flame ionization detection (GC-FID).

View Article and Find Full Text PDF

Antibiofilm, Anti-Inflammatory, and Regenerative Properties of a New Stable Ozone-Gel Formulation.

Pharmaceutics

December 2024

Medical Microbiology Unit, Department of Medicine and Surgery, University of Perugia, Piazzale Severi, Building D, 4th Floor, 06129 Perugia, Italy.

: Chronic skin wounds are characterized by inflammation, persistent infections, and tissue necrosis. The presence of bacterial biofilms prolongs the inflammatory response and delays healing. Ozone is a potent antimicrobial molecule, and many formulations have been used in the advanced therapeutic treatment of chronic wounds.

View Article and Find Full Text PDF

Biofilms are a well-known multifactorial virulence factor with a pivotal role in chronic bacterial infections. Their pathogenicity is determined by the combination of strain-specific mechanisms of virulence and the biofilm extracellular matrix (ECM) protecting the bacteria from the host immune defense and the action of antibacterials. The successful antibiofilm agents should combine antibacterial activity and good biocompatibility with the capacity to penetrate through the ECM.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!