AI Article Synopsis

  • * A new treatment using pabinafusp alfa, a fusion protein that can cross the BBB, has been shown to effectively clear harmful heparan sulfate (HS) from the brain in MPS II mouse models, preventing neurodegeneration and improving cognitive function.
  • * The study found that chronic administration of pabinafusp alfa led to reduced HS levels in the brain and cerebrospinal fluid (

Article Abstract

Mucopolysaccharidosis II (MPS II), a lysosomal storage disease caused by mutations in iduronate-2-sulfatase (IDS), is characterized by a wide variety of somatic and neurologic symptoms. The currently approved intravenous enzyme replacement therapy with recombinant IDS (idursulfase) is ineffective for CNS manifestations due to its inability to cross the blood-brain barrier (BBB). Here, we demonstrate that the clearance of heparan sulfate (HS) deposited in the brain by a BBB-penetrable antibody-enzyme fusion protein prevents neurodegeneration and neurocognitive dysfunctions in MPS II mice. The fusion protein pabinafusp alfa was chronically administered intravenously to MPS II mice. The drug reduced HS and attenuated histopathological changes in the brain, as well as in peripheral tissues. The loss of spatial learning abilities was completely suppressed by pabinafusp alfa, but not by idursulfase, indicating an association between HS deposition in the brain, neurodegeneration, and CNS manifestations in these mice. Furthermore, HS concentrations in the brain and reduction thereof by pabinafusp alpha correlated with those in the cerebrospinal fluid (CSF). Thus, repeated intravenous administration of pabinafusp alfa to MPS II mice decreased HS deposition in the brain, leading to prevention of neurodegeneration and maintenance of neurocognitive function, which may be predicted from HS concentrations in CSF.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8116601PMC
http://dx.doi.org/10.1016/j.ymthe.2021.01.027DOI Listing

Publication Analysis

Top Keywords

mps mice
16
pabinafusp alfa
12
clearance heparan
8
heparan sulfate
8
prevents neurodegeneration
8
neurodegeneration neurocognitive
8
cns manifestations
8
fusion protein
8
deposition brain
8
brain
6

Similar Publications

Introduction: Cadmium (Cd) and polystyrene microplastics (PS-MPs), two ubiquitous environmental contaminants, produce unique synergistic toxicity when co-existing. Key unanswered questions include specific effects on liver function and potential mechanisms.

Methods: In this study, C57BL/6 mice and AML12 cells were used to establish and models to elucidate the effects of combined exposure to PS-MPs and Cd on the liver and their mechanisms.

View Article and Find Full Text PDF

The physical abrasion of plastics from simple everyday entered the food chain, with associated risks recently emphasized. Although many studies have reported the adverse effects of microplastics (MPs) on human, the reproductive implications of continuous exposure to physically abraded polyethylene terephthalate (PET)-MPs remain unexplored. Ingestion of physically abraded PET-MPs (size range: 50-100 µm) in mice from 5 to 34 weeks of age at an annual intake relevant dose of MPs (5 mg week) significantly impaired male reproductive function.

View Article and Find Full Text PDF

As new pollutants, microplastics (MPs) have attracted much attention worldwide because they cause serious environmental pollution and pose potential health risks to humans. However, the toxic effects of MPs are still unclear. In this study, we analysed the inflammatory effects of 0.

View Article and Find Full Text PDF

Microplastics (MPs) represent an emerging pollutant capable of entering the human body through the respiratory and digestive systems, thereby posing significant health risks. Systemic lupus erythematosus (SLE) is a complex autoimmune disease that affects multiple organ systems, often presenting with polyarticular joint manifestations. Despite its relevance, there is currently limited research on the impact of MPs on lupus arthritis.

View Article and Find Full Text PDF

Mucopolysaccharidosis type I (MPS I) is a metabolic disorder characterized by a deficiency in α-l-iduronidase (IDUA), leading to impaired glycosaminoglycan degradation. Current approved treatments seek to restore IDUA levels via enzyme replacement therapy (ERT) and/or hematopoietic stem cell transplantation (HSCT). The effectiveness of these treatment strategies in preventing neurodegeneration is limited due to the inability of ERT to penetrate the blood-brain barrier (BBB) and HSCT's limited CNS reconstitution of IDUA levels.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!