Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Wounds are prone to bacterial infections, which cause a delayed healing process. Regarding the emergence of bacterial resistance to common antibiotics, using natural antimicrobial agents can be beneficial. Chitosan is a biological polymer, which has shown partial antioxidant and antimicrobial activities. In this study, core-shell nanofibrous scaffolds composed of chitosan (CS)/polyvinyl alcohol (PVA) as the core and polyvinylpyrrolidone (PVP)/ maltodextrin (MD) as the shell were developed. Satureja mutica (S. mutica) or Oliveria decumbens (O. decumbens) essential oil (EO) was encapsulated into the core of the produced scaffolds. The broth microdilution analysis showed significant antimicrobial activity of the EOs. The SEM analysis indicated that the unloaded and loaded core-shell scaffolds with S. mutica or O. decumbens EO had a uniform, beadless structure with fiber mean diameters of 210 ± 50, 250 ± 45, and 225 ± 46 nm, respectively. The CS/PVA-PVP/MD and CS/PVA/EO-PVP/MD scaffolds indicated suitable mechanical properties. The addition of the studied EOs enhanced the antioxidant activity of the scaffolds. The antimicrobial test of produced scaffolds showed that loading of 10% S. mutica or O. decumbens EO could broaden the microbicidal activity of the CS/PVA-PVP/MD scaffolds. These results revealed that the CS/PVA/EO-PVP/MD nanofibrous scaffolds are promising candidates for wound dressing.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ijpharm.2021.120288 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!