One of the leading killer diseases that target the parenchymal tissues of lungs is Tuberculosis. Although antimycobacterial drugs are available, there are increased incidences of drug resistance encountered in Mycobacterium sp. They have been categorized into MDR (Multidrug resistant) and XDR (Extensively drug-resistant) strains exhibiting resistance toward successive treatment regimen. This situation threatens the futuristic containment of TB with the dearth of anti-TB drugs. Nanotechnology, the emerging multidisciplinary science has presented an excellent opportunity for timely and accurate diagnosis and discrimination of Mycobacteria via its unique physio-chemical and optical characteristics. The delayed and misdiagnosis of TB and lack of sensitive diagnostic method(s) has seen a paradigm shift toward nanoparticulate system for improved diagnosis, drug delivery and reduced treatment frequency. This review article highlights the evolution of tuberculosis and its transformation to multidrug resistant strain. Further, the conventional methods for diagnosing TB and the challenges encountered in their analytical performance have been highlighted and the strategies to overcome those challenges have been briefly discussed. Smart approaches encompassing metal nanoparticles, Quantum Dots (QDs) and Field Effect Transistors (FET) based biosensor for accurate diagnosis have been critically reviewed. A decade long state-of-the-art knowledge on TB nanodiagnostics, fabrication concepts and performance characteristics has been reviewed.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.cbi.2021.109397 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!