El Niño is an extreme weather event featuring unusual warming of surface waters in the eastern equatorial Pacific Ocean. This phenomenon is characterized by heavy rains and floods that negatively affect the economic activities of the impacted areas. Understanding how this phenomenon influences consumption behavior at different granularity levels is essential for recommending strategies to normalize the situation. With this aim, we performed a multi-scale analysis of data associated with bank transactions involving credit and debit cards. Our findings can be summarized into two main results: Coarse-grained analysis reveals the presence of the El Niño phenomenon and the recovery time in a given territory, while fine-grained analysis demonstrates a change in individuals' purchasing patterns and in merchant relevance as a consequence of the climatic event. The results also indicate that society successfully withstood the natural disaster owing to the economic structure built over time. In this study, we present a new method that may be useful for better characterizing future extreme events.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7842981 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0244409 | PLOS |
Exp Mol Med
January 2025
Department of General Surgery, Tangdu Hospital of the Air Force Medical University, 569 Xin Si Road, Xi'an, 710038, Shaanxi, China.
Liver cirrhosis is prognostically associated with poor life expectancy owing to subsequent liver failure. Thus, understanding liver regeneration processes during cirrhotic injury is highly important. This study explored the role of macrophage heterogeneity in liver regeneration following splenectomy.
View Article and Find Full Text PDFCancer Sci
December 2024
Department of Respiratory and Critical Care Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
Third-generation epidermal growth factor receptor tyrosine kinase inhibitor (EGFR-TKI) is the standard therapy for patients harboring T790M after first-generation EGFR-TKI resistance. However, the impact of acquired EGFR amplification on the efficacy of third-generation EGFR-TKI against T790M remains uncertain. We aimed to investigate whether the presence of acquired EGFR amplification after first-generation EGFR-TKI resistance influences the efficacy of third-generation EGFR-TKI in patients with advanced non-small-cell lung cancer (NSCLC).
View Article and Find Full Text PDFAnticancer Res
January 2025
AntiCancer Inc., San Diego, CA, U.S.A.;
Background/aim: Methionine addiction, known as the Hoffman effect, makes cancer cells more sensitive to methionine restriction than normal cells. However, the long-term effects of methionine restriction on cancer and normal cells have not been thoroughly studied.
Materials And Methods: HCT-116 human colorectal-cancer cells and Hs27 normal skin fibroblasts were treated with 0-8 U/ml of recombinant methioninase (rMETase) for 12 days.
Neuropediatrics
December 2024
Great Ormond Street Hospital for Children, London, United Kingdom of Great Britain and Northern Ireland.
We describe a set of monozygotic twins with GRIN2B-related neurodevelopmental disorder (GRIN2B-ND) who exhibited distinct clinical and imaging characteristics due to a de novo heterozygous pathogenic variant in the GRIN2B gene (c.2453T>C, p.Met818Thr).
View Article and Find Full Text PDFInt J Psychophysiol
December 2024
Clinical Neurophysiology Research Laboratory, Western Psychiatric Hospital, Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
The N1 auditory evoked potential amplitude depends heavily on the inter-stimulus interval (ISI). Typically, shorter ISIs result in reduced N1 amplitudes, suggesting a decreased neural response with high stimulus presentation rates. However, an exception known as N1 facilitation occurs with very brief ISIs (~150-500 ms), where the N1 amplitude increases.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!