A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

The Effect of Hypoglycemia on Spectral Moments in EEG Epochs of Different Durations in Type 1 Diabetes Patients. | LitMetric

The potential of using an electroencephalogram (EEG) to detect hypoglycemia in patients with type 1 diabetes (T1D) has been investigated in both time and frequency domains. Under hyperinsulinemic hypoglycemic clamp conditions, we have shown that the brain's response to hypoglycemic episodes could be described by the centroid frequency and spectral gyration radius evaluated from spectral moments of EEG signals. The aim of this paper is to investigate the effect of hypoglycemia on spectral moments in EEG epochs of different durations and to propose the optimal time window for hypoglycemia detection without using clamp protocols. The incidence of hypoglycemic episodes at night time in five T1D adolescents was analyzed from selected data of ten days of observations in this study. We found that hypoglycemia is associated with significant changes (P < 0.05) in spectral moments of EEG segments in different lengths. Specifically, the changes were more pronounced on the occipital lobe. We used effect size as a measure to determine the best EEG epoch duration for the detection of hypoglycemic episodes. Using Bayesian neural networks, this study showed that 30 second segments provide the best detection rate of hypoglycemia. In addition, Clarke's error grid analysis confirms the correlation between hypoglycemia and EEG spectral moments of this optimal time window, with 86% of clinically acceptable estimated blood glucose values. These results confirm the potential of using EEG spectral moments to detect the occurrence of hypoglycemia.

Download full-text PDF

Source
http://dx.doi.org/10.1109/JBHI.2021.3054876DOI Listing

Publication Analysis

Top Keywords

spectral moments
24
moments eeg
16
hypoglycemic episodes
12
hypoglycemia
8
hypoglycemia spectral
8
eeg
8
eeg epochs
8
epochs durations
8
type diabetes
8
optimal time
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!