G protein coupled receptor kinase 5 (GRK5) is localized within the nucleus and moderates functions such as DNA transcription, in addition to its localization at the plasma membrane. In this report, we show that GRK5 modifies the nucleolar stress response activated by the DNA polymerase inhibitor, actinomycin D (ActD). We show an increased sensitivity to the apoptotic effects of ActD on cervical HeLa cells and the breast cancer cell line MDA MB 231 with reduced protein expression of GRK5. We also tested two types of breast cancer cells (MDA MB 231 and MCF7 cells) and found that the rate of response to ActD varied between them because they have innate differences in the protein expression of GRK5. We also found that GRK5 phosphorylates nucleophosmin (NPM1) at T199 before and during the early stages of ActD treatment. Phosphorylation at T199 increases the ability of NPM1 to interact with p14 in vitro, which may affect the protein expression levels of p14. We found that the expression levels of p14 were lower in the cells transfected with the control shRNA, but higher in cells transfected with GRK5 shRNA. Collectively, this suggests that GRK5 modifies the nucleolar stress response associated with ActD.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1139/bcb-2020-0480 | DOI Listing |
Methods Mol Biol
December 2024
Aging + Cardiovascular Discovery Center, Department of Cardiovascular Sciences, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA.
One of the greatest scientific achievements of the twenty-first century is the completion of The Human Genome Project (HGP). Thereafter, we came to know that the human genome codes nearly 2% for making proteins and thus named as coding genes, suggesting the rest of the genome as noncoding or junk. However, research in the past two decades has shown and established that noncoding RNAs are major contributors of regulating and modulating the various function of cells as well as tissues.
View Article and Find Full Text PDFSmall nucleolar RNAs (snoRNAs) are critical in guiding post-transcriptional modifications like 2'- -methylation (Nm), which play crucial roles in downstream processes such as splicing and translation. This study tests a novel method for Nm validation, addressing a significant gap in modern Nm research, and offers insight into the intricacies of snoRNA-guided Nm. While mapping of Nm modifications has seen significant improvement within the past decade, no major techniques have been able to validate these potential sites.
View Article and Find Full Text PDFNucleic Acids Res
December 2024
Division of Chemistry, Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama, Toyonaka, Osaka 560-8531, Japan.
Non-canonical DNA structures, such as the G-quadruplex (G4) and i-motif (iM), are formed at guanine- and cytosine-rich sequences, respectively, in living cells and involved in regulating various biological processes during the cell cycle. Therefore, the formation and resolution of these non-canonical structures must be dynamically regulated by physiological conditions or factors that can bind G4 and iM structures. Although many G4 binding proteins responsible for tuning the G4 structure have been discovered, the structural regulation of iM by iM-binding proteins remains enigmatic.
View Article and Find Full Text PDFMethods Mol Biol
November 2024
Department of Chemistry and Biochemistry and the Molecular Biology Institute, University of California Los Angeles, Los Angeles, CA, USA.
The nuclear RNA exosome complex is crucial for noncoding RNA processing and RNA quality control in the nucleus. Identifying substrates and intermediates of RNA decay pathways, such as those mediated by the exosome complex using Oxford Nanopore sequencing can be difficult in part because a simple method to detect them has been lacking and also because some of these RNAs lack abundant poly(A) tails which are required for Oxford Nanopore-based sequencing. Here we describe an Oxford nanopore-based approach which can be used to identify long reads corresponding to precursors and products of nuclear exosome processing.
View Article and Find Full Text PDFJ Cell Mol Med
June 2024
Department of Obstetrics and Gynecology, Guangzhou Key Laboratory of Targeted Therapy for Gynecologic Oncology, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, Guangdong-Hong Kong-Macao Greater Bay Area Higher Education Joint Laboratory of Maternal-Fetal Medicine, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.
Eukaryotic cells possess multiple mechanisms of self-destruction, including pyroptosis and necroptosis. Pyroptosis is a type of programmed cell death characterized by cellular rupture and linked to inflammation. SnoRNA, a small non-coding RNA in the nucleolus, can dysregulate specific RNAs through 2'-O-methylation, contributing to tumorigenesis.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!