Aryne 1,2,3,5-Tetrasubstitution Enabled by 3-Silylaryne and Allyl Sulfoxide via an Aromatic 1,3-Silyl Migration.

J Am Chem Soc

School of Chemistry and Chemical Engineering, Chongqing University, 174 Shazheng Street, Chongqing, P. R. China, 400030.

Published: February 2021

Although benzyne has been well-known to serve as a synthon that can conveniently prepare various 1,2-difunctionalized benzenes, the sites other than its formal triple bond remain silent in typical benzyne transformations. An unprecedented aryne 1,2,3,5-tetrasubstitution was realized from 3-silylbenzyne and aryl allyl sulfoxide, the mechanistic pathway of which includes a regioselective aryne insertion into the S═O bond, a [3,6]-sigmatropic rearrangement, and a thermal aromatic 1,3-silyl migration cascade.

Download full-text PDF

Source
http://dx.doi.org/10.1021/jacs.0c11119DOI Listing

Publication Analysis

Top Keywords

aryne 1235-tetrasubstitution
8
allyl sulfoxide
8
aromatic 13-silyl
8
13-silyl migration
8
1235-tetrasubstitution enabled
4
enabled 3-silylaryne
4
3-silylaryne allyl
4
sulfoxide aromatic
4
migration benzyne
4
benzyne well-known
4

Similar Publications

Tetraarylphosphonium Cations with Excellent Alkaline-Resistant Performance for Anion-Exchange Membranes.

ChemSusChem

December 2024

Tokyo Institute of Technology, Department of Chemical Science and Engineering, 4259 G1-9, Nagatsuta, Midori-ku,, 226-8501, Yokohama, JAPAN.

To realize the robust anion exchange membrane (AEM)-based water splitting modules and fuel cells, the design and synthesis of tetraarylphosphonium (TAP) cations are described as a new class of cationic building blocks that exhibit remarkable alkaline stability under harsh conditions. TAP cations with highly sterically demanding aromatic substituents were efficiently synthesized from triarylphosphine derivatives and highly reactive arynes, whose alkaline degradation proved to be suppressed dramatically by the sterically demanding substituents. In the case of bis(2,5-dimethylphenyl)bis(2,4,6-trimethylphenyl)phosphonium, for example, approximately 60% of the cation survived for 27 d under the forced conditions (i.

View Article and Find Full Text PDF

Migratory Aryl Cross-Coupling.

J Am Chem Soc

December 2024

Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford St., Cambridge, Massachusetts 02138, United States.

Article Synopsis
  • Cross-coupling reactions are defined by regiospecificity, meaning the bond formation site is influenced by the position of the leaving group.
  • Researchers propose a new method to create multiple structural isomers from the same coupling partners instead of synthesizing new isomer starting materials.
  • The study demonstrates the use of a bulky palladium catalyst to enable efficient transposition of aryl halides, allowing high yields of unconventional product isomers through dynamic kinetic resolution combined with various nucleophiles.
View Article and Find Full Text PDF

The article reports a hitherto-unknown aromatic proton transfer (APT) to the o-amine function chelated to manganese(II) ion and disintegration of the molecule generating an aryne intermediate. The reaction of (NQ)-NH(AQ) (o-HLH) with manganese(II) acetate in boiling DMF generates [MnII(o-HL-)2], where the o-HLH ligands undergo disintegration forming manganese(II) complexes of AQ and an 1,4- naphthoquinonyne intermediate based on benzoquinone ring, that has been defined as [NQ-2H] (NQ and AQ abbreviate respectively 1,4-naphthoquinone and 8-aminoquinoline fragments). The disintegration reaction of o-HLH depends on the metal precursor used, solvent and temperature.

View Article and Find Full Text PDF

In this study, a metal-free and efficient method for the synthesis of sulfilimines and -sulfanylanilines in high yields with excellent chemoselectivities from oxonium aryne precursors with sulfenamides has been developed. This method features mild reaction conditions, simple operations, a general substrate scope, and good tolerance of functional groups. In addition, scale-up synthesis, related applications, and preliminary mechanistic explorations were also investigated.

View Article and Find Full Text PDF

Chiral diphosphines with a biphenyl bridge and the chirality borne by the phosphorus atoms and not due to the atropoisomery of the biaryl backbone have been scarcely studied. Herein, we report the asymmetric synthesis of the (,)-2,2'-bis(ferrocenylphenylphosphino)biphenyl (BipheP*) ligand and its application in Rh-catalyzed hydrogenation. The synthesis was based on the enantioselective preparation of P-chirogenic ferrocenyl(-bromophenyl)phenylphosphine by the reaction of -phosphine-borane with 1,2-dibromobenzene and its homocoupling into BipheP*.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!