Asymmetric Hydroacylation Involving Alkene Isomerization for the Construction of C -Chirogenic Center.

Angew Chem Int Ed Engl

Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, Frontier Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China.

Published: April 2021

A new transformation pattern for enantioselective intramolecular hydroacylation has been developed involving an alkene isomerization strategy. Proceeding through a five-membered rhodacycle intermediate, 3-enals were converted to C - or C ,C -chirogenic cyclopentanones with satisfactory yields, diastereoselectivities, and enantioselectivities. A catalytic cycle has been theoretically calculated and the origin of the stereoselection is rationally explained.

Download full-text PDF

Source
http://dx.doi.org/10.1002/anie.202017190DOI Listing

Publication Analysis

Top Keywords

involving alkene
8
alkene isomerization
8
asymmetric hydroacylation
4
hydroacylation involving
4
isomerization construction
4
construction -chirogenic
4
-chirogenic center
4
center transformation
4
transformation pattern
4
pattern enantioselective
4

Similar Publications

Saturated F2-rings from Alkenes.

Angew Chem Int Ed Engl

January 2025

Enamine Ltd, Organic synthesis for drug discovery, UKRAINE.

A general method to convert simple exocyclic alkenes (no Ar-substituents) into saturated F2-rings has been developed. The reaction involves the IIII-reagent C6F5I(OAc)2 (F5-PIDA). The reaction efficiently works on the mg-, g-, and even multigram scale.

View Article and Find Full Text PDF

De novo root regeneration (DNRR) involves activation of special cells after wounding, along with the converter cells, reactive oxygen species, ethylene, and jasmonic acid, also playing key roles. An updated DNRR model is presented here with gene regulatory networks. Root formation after tissue injury is a type of plant regeneration known as de novo root regeneration (DNRR).

View Article and Find Full Text PDF

Predictive modelling of acute Promyelocytic leukaemia resistance to retinoic acid therapy.

Brief Bioinform

November 2024

Department of Biology, École Normale Supérieure, 46 rue d'Ulm, 75005 Paris, France.

Acute Promyelocytic Leukaemia (APL) arises from an aberrant chromosomal translocation involving the Retinoic Acid Receptor Alpha (RARA) gene, predominantly with the Promyelocytic Leukaemia (PML) or Promyelocytic Leukaemia Zinc Finger (PLZF) genes. The resulting oncoproteins block the haematopoietic differentiation program promoting aberrant proliferative promyelocytes. Retinoic Acid (RA) therapy is successful in most of the PML::RARA patients, while PLZF::RARA patients frequently become resistant and relapse.

View Article and Find Full Text PDF

G protein-coupled receptors (GPCRs) are a superfamily of transmembrane proteins that initiate signaling cascades through activation of its G protein upon association with its ligand. In all mammalian vision, rhodopsin is the GPCR responsible for the initiation of the phototransduction cascade. Within photoreceptors, rhodopsin is bound to its chromophore 11-cis-retinal and is activated through the light-sensitive isomerization of 11-cis-retinal to all-trans-retinal, which activates the transducin G protein, resulting in the phototransduction cascade.

View Article and Find Full Text PDF

Molecular Photoelectrocatalysis for Radical Reactions.

Acc Chem Res

January 2025

State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory of Chemical Biology of Fujian Province, College of Chemistry and Chemical Engineering, and Discipline of Intelligent Instrument and Equipment, Xiamen University, Xiamen 361005, P. R. China.

ConspectusMolecular photoelectrocatalysis, which combines the merits of photocatalysis and organic electrosynthesis, including their green attributes and capacity to offer novel reactivity and selectivity, represents an emerging field in organic chemistry that addresses the growing demands for environmental sustainability and synthetic efficiency. This synergistic approach permits access to a wider range of redox potentials, facilitates redox transformations under gentler electrode potentials, and decreases the use of external harsh redox reagents. Despite these potential advantages, this area did not receive significant attention until 2019, when we and others reported the first examples of modern molecular photoelectrocatalysis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!