In this work, a novel NiFe layered double hydroxide-derived sulfide (NiFeSx)-modified g-C3N4 nanosheet photocatalyst (NiFeSx/g-C3N4) was synthesized, and its morphology, structure and visible light absorption capacity were simultaneously characterized by XRD, SEM, TEM, FT-IR, XPS, UV-Vis DRS, PL techniques and EIS Nyquist plots. Furthermore, it was discovered that at an optimum mass ratio of 3% (NiFeSx to g-C3N4), 3% NiFeSx/g-C3N4 composites exhibited the best degradation efficiency toward tetracycline hydrochloride refractory pollutants. The degradation rate of tetracycline hydrochloride by 3% NiFeSx/g-C3N4 composites was 92.54% under 70 min of visible light illumination, which was about 2.61 times higher than that of pure g-C3N4. The improved degradation activity may be attributed to the synergistic effect between the two constituents of as-synthesized composites, and the formed heterojunction reduced the efficiency of photogenerated carriers. More importantly, this work also gives some inspiration to synthesize some similar photocatalysts for a targeted environmental remediation.

Download full-text PDF

Source
http://dx.doi.org/10.1039/d0dt04096gDOI Listing

Publication Analysis

Top Keywords

refractory pollutants
8
visible light
8
nifesx/g-c3n4 composites
8
tetracycline hydrochloride
8
construction nifes/g-cn
4
composites
4
nifes/g-cn composites
4
composites high
4
high photocatalytic
4
photocatalytic activity
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!