Actin filaments and microtubules are cytoskeletal polymers that participate in many vital cell functions including division, morphogenesis, phagocytosis, and motility. Despite the persistent dogma that actin filament and microtubule networks are distinct in localization, structure, and function, a growing body of evidence shows that these elements are choreographed through intricate mechanisms sensitive to either polymer. Many proteins and cellular signals that mediate actin-microtubule interactions have already been identified. However, the impact of these regulators is typically assessed with actin filament or microtubule polymers alone, independent of the other system. Further, unconventional modes and regulators coordinating actin-microtubule interactions are still being discovered. Here we examine several methods of actin-microtubule crosstalk with an emphasis on the molecular links between both polymer systems and their higher-order interactions.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8098829 | PMC |
http://dx.doi.org/10.1091/mbc.E19-09-0491 | DOI Listing |
Mol Psychiatry
July 2024
Adelaide Medical School, The University of Adelaide, Adelaide, SA, Australia.
Clustering Epilepsy (CE) is a neurological disorder caused by pathogenic variants of the Protocadherin 19 (PCDH19) gene. PCDH19 encodes a protein involved in cell adhesion and Estrogen Receptor α mediated-gene regulation. To gain further insights into the molecular role of PCDH19 in the brain, we investigated the PCDH19 interactome in the developing mouse hippocampus and cortex.
View Article and Find Full Text PDFPNAS Nexus
August 2023
Department of Physics and Biophysics, University of San Diego, San Diego, CA 92110, USA.
The cellular cytoskeleton relies on diverse populations of motors, filaments, and binding proteins acting in concert to enable nonequilibrium processes ranging from mitosis to chemotaxis. The cytoskeleton's versatile reconfigurability, programmed by interactions between its constituents, makes it a foundational active matter platform. However, current active matter endeavors are limited largely to single force-generating components acting on a single substrate-far from the composite cytoskeleton in cells.
View Article and Find Full Text PDFCells
March 2023
Molecular Biomedical Sciences Department, College of Veterinary Medicine, North Carolina State University, Raleigh, NC 27607, USA.
Actin-microtubule interactions are critical for cell division, yet how these networks of polymers mutually influence their mechanical properties and functions in live cells remains unknown. In fission yeast, the post-anaphase array (PAA) of microtubules assembles in the plane of the contractile ring, and its assembly relies on the Myp2p-dependent recruitment of Mto1p, a component of equatorial microtubule organizing centers (eMTOCs). The general organization of this array of microtubules and the impact on their physical attachment to the contractile ring remain unclear.
View Article and Find Full Text PDFActin-microtubule interactions are critical for cell division yet how these networks of polymers mutually influence their mechanical properties and functions in live cells remains unknown. In fission yeast, the post-anaphase array (PAA) of microtubules assembles in the plane of the contractile ring and its assembly relies on the Myp2p-dependent recruitment of Mto1p, a component of equatorial microtubule organizing centers (eMTOCs). The general organization of this array of microtubule and the impact on their physical attachment to the contractile ring remain unclear.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
December 2022
Department of Biology, Drexel University, Philadelphia, PA 19104.
Cellular morphogenesis and processes such as cell division and migration require the coordination of the microtubule and actin cytoskeletons. Microtubule-actin crosstalk is poorly understood and largely regarded as the capture and regulation of microtubules by actin. Septins are filamentous guanosine-5'-triphosphate (GTP) binding proteins, which comprise the fourth component of the cytoskeleton along microtubules, actin, and intermediate filaments.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!