flower extract was used as a biocompatible material for synthesis of zinc oxide nanoparticles (ZnONPs). The synthesized NPs were evaluated for their antibacterial potential in vitro and in vivo against the Gram-negative bacterium , which causes devastating bacterial wilt disease in tomato and other crops. Synthesized ZnONPs were further analyzed by UV-visible spectroscopy, Fourier transform infrared spectroscopy, x-ray diffraction, transmission electron microscopy, and scanning electron microscopy with energy-dispersive spectroscopy. The synthesized polydisperse ZnONPs were found to be in the size range of 8.9 to 32.6 nm, and at 18.0 µg ml exhibited maximum in vitro growth inhibition of the pathogen . . Scanning electron microscopy analysis of affected bacterial cells showed morphological deformation such as disruption of the cell membrane and wall, and the leakage of cell contents. Results of in vivo studies also showed that application of ZnONPs to the artificially inoculated tomato plants with the pathogen . significantly enhanced the plant growth by reducing bacterial soil population and disease severity as compared with the untreated control. Biosynthesized ZnONPs could be an effective approach to control the bacterium . .
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1094/PDIS-08-20-1763-RE | DOI Listing |
Food Chem
January 2025
Department of Nanotechnology, North-Eastern Hill University (NEHU), Shillong 793022, Meghalaya, India. Electronic address:
In this study, an alginate-chitosan (AL-CS) nanocomplex decorated with vitamin C coated iron oxide nanoparticles (FeO-vit C NPs) was investigated as a novel nanoiron fortification agent. The FeO-vit C NPs decorated on AL-CS nanocomplex underwent comprehensive characterization, including zeta potential, fourier transform infrared spectroscopy, X-ray diffraction, and UV-vis spectroscopy. The transmission electron microscopy (TEM) analysis confirmed the decoration of FeO-vit C NPs on AL-CS nanocomplex.
View Article and Find Full Text PDFAMB Express
January 2025
Botany and Microbiology Department, Faculty of Science, Cairo University, Giza, 12613, Egypt.
A Novel cold-active chitin deacetylase from Shewanella psychrophila WP2 (SpsCDA) was overexpressed in Escherichia coli BL21 and employed for deacetylation of chitin to chitosan. The produced chitosan was characterized, and its antifungal activity was investigated against Fusarium oxysporum. The purified recombinant SpsCDA appeared as a single band on SDS-PAGE at approximately 60 kDa, and its specific activity was 92 U/mg.
View Article and Find Full Text PDFSci Rep
January 2025
Multifunctional Materials Laboratory, Department of Physics, Indian Institute of Technology Madras, Chennai, 600036, India.
The utilization of single crystals is exponentially growing in optoelectronic devices due to their exceptional benefits, including high phase purity and the absence of grain boundaries. However, achieving single crystals with a porous structure poses significant challenges. In this study, we present a method for fabricating porous single crystals (porous-SC) of CsAgBiBr and related halide double perovskites using an infrared-assisted spin coating technique.
View Article and Find Full Text PDFSci Rep
January 2025
Foot and Ankle Research and Innovation Lab (FARIL), Department of Orthopaedic Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
Tendon injuries present significant medical, social, and economic challenges globally. Despite advancements in tendon injury repair techniques, outcomes remain suboptimal due to inferior tissue quality and functionality. Tissue engineering offers a promising avenue for tendon regeneration, with biocompatible scaffolds playing a crucial role.
View Article and Find Full Text PDFAMB Express
January 2025
Faculty of Basic Sciences, King Salman International University, South Sinai City, 46612, Egypt.
The rise of antimicrobial-resistant microorganisms (AMR) poses a significant global challenge to human health and economic stability. In response, various scientific communities are seeking safe alternatives to antibiotics. This study comprehensively investigates the antibacterial effects of red dye derived from Monascus purpureus against three bacterial pathogens: Salmonella typhimurium ATCC14028, Escherichia coli ATCC8739, and Enterococcus faecalis ATCC25923.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!