Paroxysmal dyskinesias (PD) are rare movement disorders characterized by recurrent attacks of dystonia, chorea, athetosis, or their combination, with large phenotypic and genetic heterogeneity. 3-Hydroxy-isobutyryl-CoA hydrolase () deficiency is a neurodegenerative disease characterized in most patients by a continuous decline in psychomotor abilities or a secondary regression triggered by febrile infections and metabolic crises.We describe two PD patients from two pedigrees, both carrying a homozygous c.913A > G, p.Thr305Ala mutation in the gene, associated with an unusual clinical presentation. The first patient presented in the second year of life with right paroxysmal hemidystonia lasting for 30 minutes, without any loss of consciousness and without any triggering factor. The second patient has presented since the age of 3 recurrent exercise-induced PD episodes which have been described as abnormal equinovarus, contractures of the lower limbs, lasting for 1 to 4 hours, associated with choreic movements of the hands. Their neurological examination and metabolic screening were normal, while brain magnetic resonance imaging showed abnormal signal of the pallidi.We suggest that deficiency, through the accumulation of metabolic intermediates of the valine catabolic pathway, leads to a secondary defect in respiratory chain activity and pyruvate dehydrogenase () activity and to a broad phenotypic spectrum ranging from Leigh syndrome to milder phenotypes. The two patients presented herein expand the spectrum of the disease to include unusual paroxysmal phenotypes and deficiency should be considered in the diagnostic strategy of PD to enable adequate preventive treatment.

Download full-text PDF

Source
http://dx.doi.org/10.1055/s-0040-1722678DOI Listing

Publication Analysis

Top Keywords

paroxysmal dyskinesias
8
3-hydroxy-isobutyryl-coa hydrolase
8
patient presented
8
paroxysmal
4
dyskinesias revealing
4
revealing 3-hydroxy-isobutyryl-coa
4
hydrolase hibch
4
deficiency
4
hibch deficiency
4
deficiency paroxysmal
4

Similar Publications

Huntington's disease (HD) is an autosomal dominant neurodegenerative disorder characterized by a repeat of the cytosine-adenine-guanine trinucleotide (CAG) in the huntingtin gene (HTT). This results in the translation of a mutant huntingtin (mHTT) protein with an abnormally long polyglutamine (polyQ) repeat. The pathology of HD leads to neuronal cell loss, motor abnormalities, and dementia.

View Article and Find Full Text PDF

Associations Between Diabetes Mellitus and Neurodegenerative Diseases.

Int J Mol Sci

January 2025

Chair and Department of General Biology and Parasitology, Medical University of Warsaw, Chałubińskiego 5, 02-004 Warsaw, Poland.

Diabetes mellitus (DM) and neurodegenerative diseases/disturbances are worldwide health problems. The most common chronic conditions diagnosed in persons 60 years and older are type 2 diabetes mellitus (T2DM) and cognitive impairment. It was found that diabetes mellitus is a major risk for cognitive decline, dementia, Parkinson's disease (PD), Alzheimer's disease (AD), Huntington's disease (HD), amyotrophic lateral sclerosis (ALS) and other neurodegenerative disorders.

View Article and Find Full Text PDF

AI-Powered Neurogenetics: Supporting Patient's Evaluation with Chatbot.

Genes (Basel)

December 2024

Genomic Medicine Laboratory UILDM, IRCCS Santa Lucia Foundation, 00179 Rome, Italy.

Background/objectives: Artificial intelligence and large language models like ChatGPT and Google's Gemini are promising tools with remarkable potential to assist healthcare professionals. This study explores ChatGPT and Gemini's potential utility in assisting clinicians during the first evaluation of patients with suspected neurogenetic disorders.

Methods: By analyzing the model's performance in identifying relevant clinical features, suggesting differential diagnoses, and providing insights into possible genetic testing, this research seeks to determine whether these AI tools could serve as a valuable adjunct in neurogenetic assessments.

View Article and Find Full Text PDF

Identifying time patterns in Huntington's disease trajectories using dynamic time warping-based clustering on multi-modal data.

Sci Rep

January 2025

Cognition and Brain Plasticity Unit, Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), Barcelona, Spain.

One of the principal goals of Precision Medicine is to stratify patients by accounting for individual variability. However, extracting meaningful information from Real-World Data, such as Electronic Health Records, still remains challenging due to methodological and computational issues. A Dynamic Time Warping-based unsupervised-clustering methodology is presented in this paper for the clustering of patient trajectories of multi-modal health data on the basis of shared temporal characteristics.

View Article and Find Full Text PDF

Background: Trinucleotide repeat expansions are an emerging class of genetic variants associated with various movement disorders. Unbiased genome-wide analyses can reveal novel genotype-phenotype associations and provide a diagnosis for patients and families.

Objective: The aim was to identify the genetic cause of a severe progressive movement disorder phenotype in 2 affected brothers.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!