There is increasing evidence suggesting a role of intestinal dysfunction in a number of autoimmune diseases. Primary Sjögren's syndrome (pSS) is a systemic autoimmune disease with a documented increased level of intestinal inflammation, whereas multiple sclerosis (MS) is an organ-specific autoimmune disease known to exhibit increased intestinal permeability. In this study we determine to what extent intestinal inflammation, analysed by a faecal calprotectin ELISA, is accompanied by altered intestinal wall permeability, as measured by a lactulose and mannitol intestinal absorption assay. Intestinal permeability was increased in both pSS and MS patients, while faecal calprotectin was elevated in pSS but normal in MS. Our findings suggest different mechanisms mediating a leaky gut in these two diseases: in pSS there is autoimmune attack directly on the intestinal wall; in MS, with autoimmunity being limited to the CNS, it may be due to a disturbed CNS regulation of enteric nerve function.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7815467 | PMC |
http://dx.doi.org/10.1016/j.jtauto.2021.100082 | DOI Listing |
Metab Brain Dis
January 2025
The Second Affiliated Hospital of Guilin Medical University, Guilin Medical University, Guilin, 541199, Guangxi, China.
Type 2 diabetes (T2D) is an important risk factor for brain cognitive impairment, but the specific mechanism is still unclear. The imbalance of gut microbiota under pathological conditions (such as an increase in pathogenic bacteria) may be involved in the occurrence of various diseases. The purpose of this study is to investigate the effect of increased abundance of gut Citrobacter rodentium on cognitive function in T2D mice.
View Article and Find Full Text PDFJ Med Food
January 2025
Instituto de Agroquímica y Tecnología de Alimentos (IATA-CSIC), Paterna (Valencia), Spain.
Recent studies show that inorganic arsenic (As) exerts a toxic effect on the intestinal epithelium, causing a significant increase in its permeability. This disruption of the epithelial barrier may favor the entry of contaminants or toxins into the systemic circulation, thus causing toxicity not only at the intestinal level but possibly also at the systemic level. The present study conducts an evaluation of the protective effect of various dietary supplements and plant extracts against the intestinal toxicity of inorganic As.
View Article and Find Full Text PDFFood Funct
January 2025
College of Food Science, Shenyang Agricultural University, Shenyang 110161, China.
Pectin is an acidic heteropolysaccharide with natural, green, and inexpensive characteristics. Compared to polysaccharides, oligosaccharides are more easily utilized by the body, and the physiological function of hawthorn pectin oligosaccharides (POS) may vary depending on their degree of polymerization (DP). Therefore, we mainly studied the effects of hawthorn pectin (HP) and POS with different DP on gut microbiota disorders induced by high-fat diet (HFD).
View Article and Find Full Text PDFNon-alcoholic fatty liver disease (NAFLD) is a chronic condition characterized by hepatic steatosis in the absence of significant alcohol consumption and is increasingly recognized as the hepatic manifestation of metabolic syndrome (MetS). This review aims to explore the molecular mechanisms underlying the interaction between NAFLD, insulin resistance (IR), and MetS, with a focus on identifying therapeutic targets. A comprehensive review of existing literature on NAFLD, IR, and MetS was conducted.
View Article and Find Full Text PDFCurr Res Food Sci
December 2024
Department of Immunology, College of Basic Medical Sciences, Jilin University, 126 Xin min Street, Changchun, 130021, China.
Inflammatory bowel disorders (IBD) can lead to severe complications like perforation, bleeding, and colon cancer, posing life-threatening risks. Murray ( Murr.), rich in polysaccharides, has been utilized in traditional diets for thousands of years.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!