Near-infrared mechanoluminescence crystals: a review.

iScience

School of Physics and Optoelectronic, State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Fiber Laser Materials and Applied Techniques, South China University of Technology, Guangzhou 510640, China.

Published: January 2021

Due to the , real-time, and non-destructive properties, mechanoluminescence (ML) crystals have been considered as intelligent stress sensors, which demonstrate potential applications such as in inner crack visualization, light source, and ultrasonic powder recording. Thereinto, it is highly expected that near-infrared (NIR) MLs can realize the visualization of inner biological stress because mechanically induced signals from them can penetrate biological tissues. However, such an energy conversion technique fails to work in biomechanical monitoring due to the limited advances of NIR ML materials. Based on those, some research groups have begun to focus on this field and initially realized this idea while related advances are still at the early stage. To advance this field, it is highly desirable to review recent advances in NIR ML crystals. In this review, to our knowledge, all the NIR ML crystals have been included in two main groups: oxysulfides and oxides. Besides, the present and emerging trends in investigation of such crystals were discussed. In all, the aim is to advance NIR ML crystals to more practical applications, especially for that of biomechanical visualization .

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7814156PMC
http://dx.doi.org/10.1016/j.isci.2020.101944DOI Listing

Publication Analysis

Top Keywords

nir crystals
12
mechanoluminescence crystals
8
advances nir
8
crystals
6
nir
5
near-infrared mechanoluminescence
4
crystals review
4
review real-time
4
real-time non-destructive
4
non-destructive properties
4

Similar Publications

Luminescent materials doped with rare-earth (RE) ions have emerged as powerful tools in thermometry, offering high sensitivity and accuracy. However, challenges remain, particularly in maintaining efficient luminescence at elevated temperatures. This study investigates the thermometric properties of BiVO: Yb/Er (BVO: Er/Yb) nanophosphors synthesized the sol-gel method.

View Article and Find Full Text PDF

Photonic crystals (PC) play a key role in optical field modulation due to their unique photonic band gaps (PBGs). Anodic aluminum oxide (AAO) prepared by pulse anodization is a promising candidate for PC devices. In this research, an AAO-based PC with multi-band was fabricated on a single-slice & single-material film, which exhibits multi-band responses in the visible-to-near-infrared (vis-NIR) region.

View Article and Find Full Text PDF

Following the industrial revolution and the modernization of chemistry, purple became one of the most popular colors in the palettes of late 19th- to 20th-century painters. Among them, Robert Delaunay (1885-1941) was one of the key artists of the avant-garde movement in France in the early 20th century. Although widely used in modern and contemporary paintings, inorganic purple pigments of the cobalt phosphate and cobalt arsenate families have been little studied chemically until now.

View Article and Find Full Text PDF

Constructing a Self-Referenced NIR-II Thermometer with Energy Tuning of Coordinating Water Molecules by a Minimalist Method.

ACS Appl Mater Interfaces

January 2025

State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China.

Fluorescence thermometry based on metal halide perovskites is increasingly becoming a hotspot due to its advantages of high detection sensitivity, noninvasiveness, and fast response time. However, it still presents certain technical challenges in practical applications, such as complex synthesis methods, the use of toxic solvents, and being currently mainly based on the visible/first near-infrared light with poor penetration and severe autofluorescence. In this study, we synthesize the second near-infrared (NIR-II) luminescent crystals based on Yb/Nd-doped zero-dimensional CsScCl·HO by a simple "dissolve-dry" method.

View Article and Find Full Text PDF

Intelligent soft robots that integrate both structural color and controllable actuation ability have attracted substantial attention for constructing biomimetic systems, biomedical devices, and soft robotics. However, simultaneously endowing single-layer cholesteric liquid crystal elastomer (CLCE) soft actuators with reversible 3D deformability and vivid structural color changes is still challenging. Herein, a multi-responsive (force, heat and light) single-layer 3D deformable soft actuator with vivid structural color-changing ability is realized through the reduced graphene oxide (RGO) deposition-induced Janus structure of the CLCE using a precisely-controlled evaporation method.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!