Auditory brainstem response (ABR) testing is an invasive electrophysiological auditory function test. Its waveforms and threshold can reflect auditory functional changes in the auditory centers in the brainstem and are widely used in the clinic to diagnose dysfunction in hearing. However, identifying its waveforms and threshold is mainly dependent on manual recognition by experimental persons, which could be primarily influenced by individual experiences. This is also a heavy job in clinical practice. In this work, human ABR was recorded. First, binarization is created to mark 1,024 sampling points accordingly. The selected characteristic area of ABR data is 0-8 ms. The marking area is enlarged to expand feature information and reduce marking error. Second, a bidirectional long short-term memory (BiLSTM) network structure is established to improve relevance of sampling points, and an ABR sampling point classifier is obtained by training. Finally, mark points are obtained through thresholding. The specific structure, related parameters, recognition effect, and noise resistance of the network were explored in 614 sets of ABR clinical data. The results show that the average detection time for each data was 0.05 s, and recognition accuracy reached 92.91%. The study proposed an automatic recognition of ABR waveforms by using the BiLSTM-based machine learning technique. The results demonstrated that the proposed methods could reduce recording time and help doctors in making diagnosis, suggesting that the proposed method has the potential to be used in the clinic in the future.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7829202PMC
http://dx.doi.org/10.3389/fmed.2020.613708DOI Listing

Publication Analysis

Top Keywords

automatic recognition
8
auditory brainstem
8
brainstem response
8
bidirectional long
8
long short-term
8
short-term memory
8
waveforms threshold
8
sampling points
8
abr
6
auditory
5

Similar Publications

Introduction: Potatoes and tomatoes are important Solanaceae crops that require effective disease monitoring for optimal agricultural production. Traditional disease monitoring methods rely on manual visual inspection, which is inefficient and prone to subjective bias. The application of deep learning in image recognition has led to object detection models such as YOLO (You Only Look Once), which have shown high efficiency in disease identification.

View Article and Find Full Text PDF

Data-driven discovery and parameter estimation of mathematical models in biological pattern formation.

PLoS Comput Biol

January 2025

Department of Anatomy and Cell Biology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Fukuoka, Japan.

Mathematical modeling has been utilized to explain biological pattern formation, but the selections of models and parameters have been made empirically. In the present study, we propose a data-driven approach to validate the applicability of mathematical models. Specifically, we developed methods to automatically select the appropriate mathematical models based on the patterns of interest and to estimate the model parameters.

View Article and Find Full Text PDF

Background: Individuals with hearing impairments may face hindrances in health care assistance, which may significantly impact the prognosis and the incidence of complications and iatrogenic events. Therefore, the development of automatic communication systems to assist the interaction between this population and health care workers is paramount.

Objective: This study aims to systematically review the evidence on communication systems using human-computer interaction techniques developed for deaf people who communicate through sign language that are already in use or proposed for use in health care contexts and have been tested with human users or videos of human users.

View Article and Find Full Text PDF

Improved hardware and processing techniques such as synthetic aperture sonar have led to imaging sonar with centimeter resolution. However, practical limitations and old systems limit the resolution in modern and legacy datasets. This study proposes using single image super resolution based on a conditioned diffusion model to map between images at different resolutions.

View Article and Find Full Text PDF

Vehicle speed measurement method using monocular cameras.

Sci Rep

January 2025

Computer and Information Engineering College, Inner Mongolia Agricultural University, Hohhot, 010000, China.

This paper proposes a method for fast and accurate vehicle speed measurement based on a monocular camera. Firstly, by establishing a new camera imaging model, the calibration method for variable focal lengths is optimized, simplifying the transformation process between the four coordinate systems in traditional camera imaging models, and the method does not need to restore the pixel coordinates to dedistortion. Secondly, based on the camera imaging model, a two-dimensional positioning algorithm is proposed.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!