In this work, seven indigenous macrofungal isolates were selected to screen for their laccase production capability. Among them, isolates viz., and were found to exhibit high laccase activity in the preliminary studies and were thus selected for the optimization studies with an aim to enhance laccase production. The pH optimization studies were carried out between pH range of 4-6. The laccase activity and biomass were found to be optimum at pH 4, 4.5, 4.5 and 5 for and respectively Optimization studies with chemical inducers namely, tannic acid, 2,6 dimethoxyphenol and copper sulphate at three different concentration levels were conducted and tannic acid at 2 mM concentration was found to increase the laccase activity to about 45% followed by 2,6 dimethoxyphenol (2 mM) with an increase of about 43% and copper sulphate (0.1 mM) showing 21% increase in the yield. Biodegradation studies utilizing laccase isolated from and was carried out for a commonly detected fluoroquinolone antibiotic, levofloxacin, in water and pharmaceutical wastewater. The results indicated that the degradation efficiency of levofloxacin using laccase isolated from (88.9%) was comparable to commercial laccase (89%). When the cost economics of using crude laccase was evaluated against commercial laccase it was evident that the total cost of the treatment could be reduced by 71.7% if commercial grade laccase was replaced by crude enzyme extracted from indigenous macrofungi such and indicating a promising and cost-effective alternative for wastewater treatment.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7813955 | PMC |
http://dx.doi.org/10.1007/s13205-020-02627-1 | DOI Listing |
Int J Mol Sci
January 2025
Departamento de Micro y Nanotecnologías, Instituto de Ciencias Aplicadas y Tecnología, Universidad Nacional Autónoma de México, Cto. Exterior S/N, C.U., Coyoacán, Ciudad de México C.P. 04510, Mexico.
Thermus thermophilus HB27 laccase (Tth-Lac) is a thermostable enzyme that contains a β-hairpin (Ala292-Gln307) covering the substrate entrance. We analyzed the role of this β-hairpin in the enzymatic activity of Tth-Lac through three β-hairpin mutants: two variants without the β-hairpin (C1Tth-Lac and C2Tth-Lac) and one with a partially modified β-hairpin (P1Tth-Lac). Enzymatic activity was assayed with different substrates with and without copper.
View Article and Find Full Text PDFSheng Wu Gong Cheng Xue Bao
January 2025
State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei University, Wuhan 430062, Hubei, China.
As a biocatalyst, laccase has been widely studied and applied in the papermaking industry. However, the low catalytic efficiency and poor stability of natural laccase limit its application in the pulping process. To develop the laccase with high activity and strong tolerance, we carried out directed evolution for modification of the laccase derived from and screened out the mutants F282L/F306L and Q275P from the random mutant library by high-throughput screening.
View Article and Find Full Text PDFPlant Physiol
January 2025
Anhui Key Laboratory for Horticultural Crop Quality Biology, School of Horticulture, Anhui Agricultural University, Hefei, 230036, P.R. China.
Kiwifruit bacterial canker, a highly destructive disease caused by Pseudomonas syringae pv. actinidiae (Psa), seriously affects kiwifruit (Actinidia spp.) production.
View Article and Find Full Text PDFBiodegradation
January 2025
Civil and Environmental Engineering, Duke University, Hudson Hall 121, Box 90287, Durham, NC, 27708, USA.
Mycoremediation is a biological treatment approach that relies on fungi to transform environmental pollutants into intermediates with lower environmental burden. Basidiomycetes have commonly been used as the target fungal phylum for bioaugmentation in mycoremediation, however this phylum has been found to be unreliable when used at scale in the field. In this study, we isolated, characterized, and identified potential polycyclic aromatic hydrocarbon (PAH) degrading fungal isolates from creosote-contaminated sediment in the Elizabeth River, Virginia.
View Article and Find Full Text PDFJ Fungi (Basel)
December 2024
A.N. Bach Institute of Biochemistry, Research Center of Biotechnology, Russian Academy of Sciences, Moscow 119071, Russia.
The basidiomycete strain LE-BIN1700 (Agaricales, ) is able to grow on agar media supplemented with individual components of lignocellulose such as lignin, cellulose, xylan, xyloglucan, arabinoxylan, starch and pectin, and also to effectively destroy and digest birch, alder and pine sawdust. produces a unique repertoire of proteins for the saccharification of the plant biomass, including predominantly oxidative enzymes such as laccases (family AA1_1 CAZymes), GMC oxidoreductases (family AA3_2 CAZymes), FAD-oligosaccharide oxidase (family AA7 CAZymes) and lytic polysaccharide monooxygenases (family LPMO X325), as well as accompanying acetyl esterases and loosenine-like expansins. Metabolomic analysis revealed that, specifically, monosaccharides and carboxylic acids were the key low molecular metabolites in the culture liquids in the experimental conditions.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!