Purpose: The purpose of this study was to design and evaluate an instrument for assessing vision-related quality of life appropriate for the specific visual impairment characteristic for all stages of age-related macular degeneration (AMD), with a focus on the low luminance deficit in early/intermediate stages.

Methods: A standardized questionnaire was developed in three steps with participants with early, intermediate, and late AMD: (1) based on in-depth interviews ( = 19) and two focus group discussions ( = 5 each), content was developed followed by 2. (2) The questionnaire development using cognitive debriefing interviews ( = 3) and leading to a preliminary version of the questionnaire. (3) This version was then administered to 127 participants with early, intermediate, and late AMD. Psychometric properties, such as response category functioning (floor and ceiling effects) and targeting of item difficulty to patient ability of the pilot Vision Impairment in Low Luminance (VILL) questionnaire were evaluated using Rasch analysis.

Results: The preliminary VILL questionnaire consisted of 68 items with a 5-step response scale. Several items were removed based on floor/ceiling effects or misfit and a final pool of 37 items remained. The response scale was collapsed to four categories as one category was underutilized. The targeting of the instrument was good with minimal difference in person and item means (0.52 logits). Precision was also good with a person separation index of 3.55 and reliability of 0.93. There was evidence of multidimensionality (eigenvalue of the first contrast = 5.95) in the scale, which could be resolved by splitting the items into subscales including a reading, mobility, and emotional well-being subscale.

Conclusions: Individuals with AMD report difficulties with vision-related activities and functioning under visually challenging conditions at all stages of the disease. These aspects were considered when developing the 37-item VILL, which demonstrates promising psychometric characteristics. Further assessments of reliability and validity are warranted.

Translational Relevance: The VILL questionnaire is a new patient-reported outcome (PRO) measure developed for future use in AMD studies.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7794270PMC
http://dx.doi.org/10.1167/tvst.10.1.5DOI Listing

Publication Analysis

Top Keywords

low luminance
12
vill questionnaire
12
vision impairment
8
impairment low
8
participants early
8
early intermediate
8
intermediate late
8
late amd
8
response scale
8
questionnaire
7

Similar Publications

Feature-selective adaptation of numerosity perception.

Proc Biol Sci

January 2025

Department of Neuroscience, Psychology, Pharmacology and Child Health, University of Florence, Florence, Italy.

Perceptual adaptation has been widely used to infer the existence of numerosity detectors, enabling animals to quickly estimate the number of objects in a scene. Here, we investigated, in humans, whether numerosity adaptation is influenced by stimulus feature changes as previous research suggested that adaptation is reduced when the colour of adapting and test stimuli did not match. We tested whether such adaptation reduction is due to unspecific novelty effects or changes of stimuli identity.

View Article and Find Full Text PDF

Mid-Infrared High-Power InGaAsSb/AlGaInAsSb Multiple-Quantum-Well Laser Diodes Around 2.9 μm.

Nanomaterials (Basel)

January 2025

Key Laboratory of Optoelectronic Materials and Devices, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China.

Antimonide laser diodes, with their high performance above room temperature, exhibit significant potential for widespread applications in the mid-infrared spectral region. However, the laser's performance significantly degrades as the emission wavelength increases, primarily due to severe quantum-well hole leakage and significant non-radiative recombination. In this paper, we put up an active region with a high valence band offset and excellent crystalline quality with high luminescence to improve the laser's performance.

View Article and Find Full Text PDF

Historically, electrophysiological correlates of scene processing have been studied with experiments using static stimuli presented for discrete timescales where participants maintain a fixed eye position. Gaps remain in generalizing these findings to real-world conditions where eye movements are made to select new visual information and where the environment remains stable but changes with our position and orientation in space, driving dynamic visual stimulation. Co-recording of eye movements and electroencephalography (EEG) is an approach to leverage fixations as time-locking events in the EEG recording under free-viewing conditions to create fixation-related potentials (FRPs), providing a neural snapshot in which to study visual processing under naturalistic conditions.

View Article and Find Full Text PDF

Objective: Recent studies suggested that the medical control of atherogenic lipoproteins is not sufficient for stroke prevention. A low apolipoprotein A-I (apoA-I) level may play a crucial role in the anti-atherogenic effects of high-density lipoprotein (HDL-C) and may also be associated with symptomatic vulnerable plaques in carotid artery stenosis. Therefore, the present study investigated the relationship between apoA-I levels and the status of carotid artery stenosis.

View Article and Find Full Text PDF

Realizing low voltage-driven bright and stable quantum dot light-emitting diodes through energy landscape flattening.

Light Sci Appl

January 2025

Key Laboratory for Special Functional Materials of Ministry of Education, National & Local Joint Engineering Research Center for High-efficiency Display and Lighting Technology, Henan University, 475004, Kaifeng, China.

Solution-processed quantum dot light-emitting diodes (QLEDs) hold great potential as competitive candidates for display and lighting applications. However, the serious energy disorder between the quantum dots (QDs) and hole transport layer (HTL) makes it challenging to achieve high-performance devices at lower voltage ranges. Here, we introduce "giant" fully alloy CdZnSe/ZnSeS core/shell QDs (size ~ 19 nm) as the emitting layer to build high-efficient and stable QLEDs.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!