The study has two objectives: (1) to introduce grip force recording as a new technique for studying embodied numerical processing; and (2) to demonstrate how three competing accounts of numerical magnitude representation can be tested by using this new technique: the Mental Number Line (MNL), A Theory of Magnitude (ATOM) and Embodied Cognition (finger counting-based) account. While 26 healthy adults processed visually presented single digits in a go/no-go n-back paradigm, their passive holding forces for two small sensors were recorded in both hands. Spontaneous and unconscious grip force changes related to number magnitude occurred in the left hand already 100-140 ms after stimulus presentation and continued systematically. Our results support a two-step model of number processing where an initial stage is related to the automatic activation of all stimulus properties whereas a later stage consists of deeper conscious processing of the stimulus. This interpretation generalizes previous work with linguistic stimuli and elaborates the timeline of embodied cognition. We hope that the use of grip force recording will advance the field of numerical cognition research.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7829181 | PMC |
http://dx.doi.org/10.3389/fnhum.2020.590508 | DOI Listing |
Sci Rep
January 2025
Department of Psychology, Faculty of Psychology and Sport Science, Justus Liebig University, Otto-Behaghel-Str. 10F, 35394, Gießen, Germany.
Adapting movements to rapidly changing conditions is fundamental for interacting with our dynamic environment. This adaptability relies on internal models that predict and evaluate sensory outcomes to adjust motor commands. Even infants anticipate object properties for efficient grasping, suggesting the use of internal models.
View Article and Find Full Text PDFPLoS One
January 2025
Department of Orthopedic Surgery, Asan Medical Center, University of Ulsan College of Medicine, Songpa-gu, Seoul, Republic of Korea.
Objective: Cubital tunnel syndrome is a common peripheral neuropathy of the upper extremity. Anterior transposition of the ulnar nerve is an established surgical treatment option for this condition. This study aimed to introduce a novel musculofascial lengthening technique that uses only a portion of the flexor-pronator muscle mass for submuscular anterior transposition of the ulnar nerve and investigate its clinical outcomes.
View Article and Find Full Text PDFJMIR Rehabil Assist Technol
January 2025
Department of Occupational Therapy, Faculty of Rehabilitation Medicine, University of Alberta, Edmonton, AB, Canada.
Background: Forearm, wrist, and hand impairments affect many individuals and impose a significant economic burden on health care systems. The FEPSim (flexion, extension, pronation, and supination) is designed for hand and wrist rehabilitation. It could become part of the standard care for upper extremity rehabilitation, aiming to improve range of motion, dexterity, and strength during therapeutic activities.
View Article and Find Full Text PDFACS Sens
January 2025
CAS Key Laboratory of Magnetic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, P. R. China.
Flexible pressure sensors are pivotal in advancing artificial intelligence, the Internet of Things (IoT), and wearable technologies. While microstructuring the functional layer of these sensors effectively enhances their performance, current fabrication methods often require complex equipment and time-consuming processes. Herein, we present a novel magnetization-induced self-assembly method to develop a magnetically grown microneedle array as a dielectric layer for flexible capacitive pressure sensors.
View Article and Find Full Text PDFJ Biomech
January 2025
The Joint Department of Biomedical Engineering, the University of North Carolina at Chapel Hill, Chapel Hill, NC, United States; North Carolina State University, Raleigh, NC, United States.
Throughout childhood growth and development, both the nervous and the musculoskeletal systems undergo rapid change. The goal of this study was to examine the impact of growth-related changes in skeletal size and muscle strength on the neural control of finger force generation. By modifying an existing OpenSim hand model in accordance with pediatric anthropometric data, we created 10 distinct models representing males and females at each year of development from 6 to 10 years old.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!