Background: Fetal exposure to maternal excess adiposity and hyperglycemia is risk factors for childhood adverse metabolic outcomes. Using data from a prospective pre-birth cohort, we aimed to further understand the prenatal determinants of fetal metabolic programming based on analyses of maternal adiposity and glycemic traits across pregnancy with childhood metabolomic profiles.

Methods: This study included 330 mother-child pairs from the Gen3G cohort with information on maternal adiposity and glycemic markers at 5-16 (visit 1) and 24-30 (visit 2) weeks of pregnancy. At mid-childhood (4.8-7.2 years old), we collected fasting plasma and measured 1116 metabolites using an untargeted approach. We constructed networks of interconnected metabolites using a weighted-correlation network analysis algorithm. We estimated Spearman's partial correlation coefficients of maternal adiposity and glycemic traits across pregnancy with metabolite networks and individual metabolites, adjusting for maternal age, gravidity, race/ethnicity, history of smoking, and child's sex and age at blood collection for metabolite measurement.

Results: We identified a network of 16 metabolites, primarily glycero-3-phosphoethanolamines (GPE) at mid-childhood that showed consistent negative correlations with maternal body mass index, waist circumference, and body-fat percentage at visits 1 and 2 (ρ = -0.14 to -0.21) and post-challenge glucose levels at visit 2 (ρ = -0.10 to -0.13), while positive correlations with Matsuda index (ρ = 0.13). Within this identified network, 1-palmitoyl-2-decosahexaenoyl-GPE and 1-stearoyl-2-decosahexaenoyl-GPE appeared to be driving the associations. In addition, a network of 89 metabolites, primarily phosphatidylcholines, plasmalogens, sphingomyelins, and ceramides showed consistent negative correlations with insulin at visit 1 and post-challenge glucose at visit 2, while positive correlation with adiponectin at visit 2.

Conclusions: Prenatal exposure to maternal higher adiposity and hyperglycemic traits and lower insulin sensitivity markers were associated with a unique metabolomic pattern characterized by low serum phospho- and sphingolipids in mid-childhood.

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41366-021-00750-4DOI Listing

Publication Analysis

Top Keywords

maternal adiposity
16
adiposity glycemic
16
glycemic traits
12
traits pregnancy
12
maternal
8
pregnancy mid-childhood
8
exposure maternal
8
identified network
8
network metabolites
8
consistent negative
8

Similar Publications

Introduction: Consuming hypercaloric diets during pregnancy induces metabolic, immune, and maternal intestinal dysbiosis disorders. These conditions are transferred to the offspring through the placenta and breastfeeding, increasing susceptibility to metabolic diseases. We investigated the effect of GG supplementation on offspring maternally programmed with a hypercaloric diet.

View Article and Find Full Text PDF

Case Report: Giant axillary lipoma in an infant.

Front Pediatr

December 2024

Department of Gastroenterology, Linyi People's Hospital, Linyi, Shandong, China.

Lipoma is a benign mesenchymal tissue tumor, mainly composed of mature adipose cells; it is most common in adults and is rarely observed in children. The clinical data of an infant diagnosed with a giant axillary lipoma admitted to our hospital were analyzed. A 12-month-old girl presented with a large mass in the right axillary region.

View Article and Find Full Text PDF

Maternal resistance exercise increases infant energy expenditure.

Am J Physiol Endocrinol Metab

December 2024

Department of Kinesiology, East Carolina University, Greenville, NC, 27858, USA.

Maternal obesity decreases infant energy expenditure, subsequently predisposing infants to greater adiposity and weight gain. Conversely, some findings suggest that maternal exercise may increase infant energy expenditure; however, the impact of maternal exercise mode (i.e.

View Article and Find Full Text PDF

Evolutionary perspectives on obesity have been dominated by genetic frameworks, but plastic responses are also central to its aetiology. While often considered a relatively modern phenomenon, obesity was recorded during the Palaeolithic through small statuettes of the female form (Venus figurines). Even if the phenotype was rare, these statuettes indicate that some women achieved large body sizes during the last glacial maximum, a period of nutritional stress.

View Article and Find Full Text PDF

MDPAO1 peptide from human milk enhances brown adipose tissue thermogenesis and mitigates obesity.

Mol Cell Endocrinol

December 2024

Department of Pediatric Laboratory, Affiliated Children's Hospital of Jiangnan University, Wuxi Children's Hospital, Wuxi, 214023, China; Department of Neonatology, Affiliated Children's Hospital of Jiangnan University, Wuxi Children's Hospital, Wuxi, 214023, China. Electronic address:

The regulatory effect of breastfeeding on offspring metabolism has garnered significant attention as an effective strategy in combating childhood obesity. However, the underlying mechanism remains largely unknown. Through integrated analysis of multiple human milk peptide databases and functional screening, MDPAO1 (milk-derived peptide associated with obesity 1) was identified as having potential activity in promoting the expression of thermogenic genes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!