AI Article Synopsis

  • The poxvirus entry-fusion complex (EFC) consists of eleven conserved proteins, and the study focused on the largely unknown function of the VACV O3 protein.
  • Experimental evolution showed that viruses lacking O3 could mutate to regain entry functionality, with significant mutations identified in other proteins (F9L, L5R, and D8L) that impact the virus's ability to infect cells.
  • The study found that viruses with specific mutations (especially F9L) demonstrated higher infectivity, improved entry speed, and enhanced EFC assembly, which compensated for the absence of the O3 protein.

Article Abstract

Eleven highly conserved proteins comprise the poxvirus entry-fusion complex (EFC). We focused on vaccinia virus (VACV) O3, a 35-amino acid, largely hydrophobic component of unknown specific function. Experimental evolution was carried out by blindly passaging a virus that was severely impaired in entry due to deletion of the gene encoding O3. Large plaque variants that arose spontaneously were discerned by round four and their numbers increased thereafter. Genome sequencing of individual cloned viruses revealed mutations in predicted transmembrane domains of three open reading frames encoding proteins with roles in entry. There were frame-shift mutations in consecutive Ts in open reading frames F9L and D8L and a nonsynonymous base substitution in L5R. F9 and L5 are EFC proteins and D8 is involved in VACV cell attachment. The F9L mutation occurred by round four in each of three independant passages, whereas the L5R and D8L mutations were detected only after nearly all of the genomes already had the F9L mutation. Viruses with deletions of O3L and single or double F9L, L5R and D8L mutations were constructed by homologous recombination. In a single round of infection, viruses with adaptive mutations including F9L alone or in combination exhibited statistically significant higher virus titers than the parental O3L deletion mutant or the L5R or D8L mutants, consistent with the order of selection during the passages. Further analyses indicated that the adaptive F9L mutants also had higher infectivities, entered cells more rapidly and increased EFC assembly, which partially compensated for the loss of O3. Entry into cells is an essential first step in virus replication and an important target of vaccine- elicited immunity. For enveloped viruses, this step involves the fusion of viral and host membranes to form a pore allowing entry of the genome and associated proteins. Poxviruses are unique in that this function is mediated by an entry-fusion complex (EFC) of eleven transmembrane proteins rather than by one or a few. The large number of proteins has hindered investigation of their individual roles. We focused on O3, a predominantly hydrophobic 35 amino acid component of the vaccinia virus EFC, and found that spontaneous mutations in the transmembrane domains of certain other entry proteins can partially compensate for the absence of O3. The mutants exhibited increased infectivity, entry and assembly or stability of the EFC.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8103694PMC
http://dx.doi.org/10.1128/JVI.02228-20DOI Listing

Publication Analysis

Top Keywords

vaccinia virus
12
transmembrane domains
12
l5r d8l
12
35-amino acid
8
acid hydrophobic
8
partially compensated
8
mutations transmembrane
8
domains entry
8
proteins
8
entry proteins
8

Similar Publications

The antitumor efficacy of an intratumoral injection of a genetically engineered oncolytic vaccinia virus carrying human IL-7 and murine IL-12 genes (hIL-7/mIL-12-VV) was demonstrated in CT26.WT-bearing mice. In the CT26.

View Article and Find Full Text PDF

Multi-Component Protein Vaccine Induces a Strong and Long-Term Immune Response Against Monkeypox Virus.

Vaccines (Basel)

December 2024

State Key Laboratory of Pathogens and Biosecurity, Academy of Military Medical Sciences, Beijing 100071, China.

Background/objectives: Since 2022, outbreaks of monkeypox have raised widespread concern and have been declared a public health emergency of international concern by the World Health Organization. There is an urgent need to develop a safe and effective vaccine against the monkeypox virus (MPXV). Recombinant protein vaccines play a significant role in the prevention of infectious diseases due to their high safety and efficacy.

View Article and Find Full Text PDF

: Poxviruses are large DNA viruses that replicate in the host cytoplasm without a nuclear phase. As vaccine vectors, they can package and express large recombinant cassettes from different positions of their genomic core region. We present a comparison between wildtype modified vaccinia Ankara (MVA) and isolate CR19, which has significantly expanded inverted terminal repeats (ITRs).

View Article and Find Full Text PDF

Background/objectives: Marburg virus (MARV) is the etiological agent of Marburg Virus Disease (MVD), a rare but severe hemorrhagic fever disease with high case fatality rates in humans. Smaller outbreaks have frequently been reported in countries in Africa over the last few years, and confirmed human cases outside Africa are, so far, exclusively imported by returning travelers. Over the previous years, MARV has also spread to non-endemic African countries, demonstrating its potential to cause epidemics.

View Article and Find Full Text PDF

Nucleocytoplasmic large DNA viruses (NCLDVs) have massive genome and particle sizes compared to other known viruses. NCLDVs, including poxviruses, encode ATPases of the FtsK/HerA superfamily to facilitate genome encapsidation. However, their biochemical and structural characteristics are yet to be discerned.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!