AI Article Synopsis

  • Oncolytic viruses (OVs) are emerging cancer therapies, but their effectiveness is limited by the inability to easily visualize and measure their growth and success in live cells.
  • In this study, researchers developed a new imaging method for analyzing OV replication and efficacy in real-time at the single-cell level, using the SG33 virus and a control virus (T1).
  • Key findings include that the modified OV can be easily detected during live imaging, SG33 shows greater replication efficiency than T1, and the method can be applied to evaluate OV effectiveness in primary pancreatic cancer cells, suggesting potential advancements in treatment for hard-to-treat cancers.

Article Abstract

Oncolytic viruses (OVs) are novel cancer gene therapies that are moving toward the forefront of modern medicines. However, their full therapeutic potential is hindered by the lack of convenient and reliable strategies to visualize and quantify OV growth kinetics and therapeutic efficacy in live cells. In this study, we present an innovative imaging approach for single-cell real-time analysis of OV replication and efficacy in cancer cells. We selected SG33 as a prototypic new OV that derives from wild-type Myxoma virus (MYXV). Lausanne Toulouse 1 (T1) was used as control. We equipped SG33 and T1 genomes with the ANCHOR system and infected a panel of cell lines. The ANCHOR system is composed of a fusion protein (OR-GFP) that specifically binds to a short nonrepetitive DNA target sequence (ANCH) and spreads onto neighboring sequences by protein oligomerization. Its accumulation on the tagged viral DNA results in the creation of fluorescent foci. We found that (1) SG33 and T1-ANCHOR DNA can be readily detected and quantified by live imaging, (2) both OVs generate perinuclear replication foci after infection clustering into horse-shoe shape replication centers, and (3) SG33 replicates to higher levels as compared with T1. Lastly, as a translational proof of concept, we benchmarked SG33 replication and oncolytic efficacy in primary cancer cells derived from pancreatic adenocarcinoma (PDAC) both at the population and at the single-cell levels. , SG33 significantly replicates in experimental tumors to inhibit tumor growth. Collectively, we provide herein for the first time a novel strategy to quantify each step of OV infection in live cells and in real time by tracking viral DNA and provide first evidence of theranostic strategies for PDAC patients. Thus, this approach has the potential to rationalize the use of OVs for the benefit of patients with incurable diseases.

Download full-text PDF

Source
http://dx.doi.org/10.1089/hum.2020.294DOI Listing

Publication Analysis

Top Keywords

cancer cells
12
imaging approach
8
approach single-cell
8
single-cell real-time
8
real-time analysis
8
replication efficacy
8
efficacy cancer
8
live cells
8
anchor system
8
viral dna
8

Similar Publications

Probable IgG4-related Orbital Disease Masked by Exuberant Ocular Surface Pseudoepitheliomatous Hyperplasia.

Ophthalmic Plast Reconstr Surg

October 2024

The Operation Eyesight Universal Institute for Eye Cancer, Ophthalmic Pathology Laboratory, LV Prasad Eye Institute, Hyderabad, India.

A 40-year-old woman presented with a mass in her OS for 2 years. Examination revealed a large conjunctival lesion on the nasal bulbar conjunctiva OS and a small upper tarsal conjunctival lesion in the OD. Biopsy OD revealed inflammatory granulation tissue, and OS revealed pseudoepitheliomatous hyperplasia with granulation tissue.

View Article and Find Full Text PDF

STUDY OF CHROMOSOME STABILITY OF HUMAN SOMATIC CELLS IN THE DEVELOPMENT OF THE SECONDARY RADIATION-INDUCED BYSTANDER EFFECT.

Probl Radiac Med Radiobiol

December 2024

State Institution «National Research Center of Radiation Medicine, Hematology and Oncology of the National Academy of Medical Sciences of Ukraine», 53 Yuriia Illienka Str., Kyiv, 04050, Ukraine.

Objective: To establish the level of chromosomal instability in human peripheral blood lymphocytes during thedevelopment of secondary radiation-induced bystander effect.

Materials And Methods: Human peripheral blood lymphocytes; culture of human non-small-cell lung cancer cell lineA549 (irradiated in vitro by 137Cs in a dose of 0.50 Gy/unirradiated).

View Article and Find Full Text PDF

This study aims to demonstrate the effect of toadflax (bufalin) on erlotinib resistance in nonsmall cell lung cancer (NSCLC) by inhibiting the fibroblast growth factor receptor (FGFR). The microfluidic mobility transferase and caliper mobility-shift assays were employed to detect the FGFR inhibition by bufalin and the binding reversibility. Further, the inhibitory effects of bufalin were determined in HCC827 and HCC827/ER cells in vitro, investigating relative FGFR overexpression by quantitative reverse transcriptase-PCR (RT-qPCR) and FGFR downstream proteins, that is, FGFR substrate 2 (FRS2), extracellular signal-regulated kinase (ERK), and S6 by western blot analysis.

View Article and Find Full Text PDF

Study Question: How can we best achieve tissue segmentation and cell counting of multichannel-stained endometriosis sections to understand tissue composition?

Summary Answer: A combination of a machine learning-based tissue analysis software for tissue segmentation and a deep learning-based algorithm for segmentation-independent cell identification shows strong performance on the automated histological analysis of endometriosis sections.

What Is Known Already: Endometriosis is characterized by the complex interplay of various cell types and exhibits great variation between patients and endometriosis subtypes.

Study Design, Size, Duration: Endometriosis tissue samples of eight patients of different subtypes were obtained during surgery.

View Article and Find Full Text PDF

Developing a 3D bone model of osteosarcoma to investigate cancer mechanisms and evaluate treatments.

FASEB J

December 2024

Antibody and Vaccine Group, Faculty of Medicine, Centre for Cancer Immunology, School of Cancer Sciences, University of Southampton, Southampton, UK.

Osteosarcoma is the most common primary bone cancer, occurring frequently in children and young adults. Patients are treated with surgery and multi-agent chemotherapy, and despite the introduction of mifamurtide in 2011, there has been little improvement in survival for decades. 3-dimensional models offer the potential to understand the complexity of the osteosarcoma tumor microenvironment and aid in developing new treatment approaches.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!