NLRP3-PYD inflammasome activates an inflammatory pathway in response to a wide variety of cell damage or infections. Dysregulated NLRP3 inflammatory signaling has many chronic inflammatory and autoimmune disorders. NLRP3 and ASC have a PYD, a superfamily member of the Death Domain, which plays a key role in inflammatory assembly. The ASC interacts with NLRP3 through a homotypic PYD and recruits the procaspase-1 through a homotypic caspase recruitment domain interaction. Here, we used several computational approaches to reveal the interactions of the NLRP3 and ASC PYD domains that lead to the activation of the inflammasome complex. We have characterized ASC and NLRP3-PYD intermolecular interactions by protein-protein docking, and further molecular dynamics (MD) simulations were conducted to evaluate the stability of NLRP3/ASC-PYD complex. Subsequently, we have identified several residues that stabilize the NLRP3/ASC-PYD complex in different faces (i.e., Face-1 to Face-4). The research framework offers new insights into the molecular mechanisms of inflammasome and apoptosis signaling as well as the ease of the drug discovery process.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acschemneuro.0c00519 | DOI Listing |
Neurochem Res
January 2025
Precision Pharmacy & Drug Development Center, Department of Pharmacy, Tangdu Hospital, Air Force Medical University, Xi'an, 710038, China.
Depression is a common and complex neuropsychiatric disorder affecting people of all ages worldwide, associated with high rates of relapse and disability. Neohesperidin (NEO) is a dietary flavonoid with applications in therapeutics; however, its effects on depressive-like behavior remain unknown. Here, we evaluated the effects of NEO on depressive-like behavior induced by chronic and unpredictable mild stress (CUMS).
View Article and Find Full Text PDFAlzheimers Dement
December 2024
Department of Neurosurgery, Maxine Dunitz Neurosurgical Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA.
Background: An emerging theory suggests a link between Alzheimer's disease (AD) and microbial infection. Notably, various microbes have been detected in the post-mortem brains of AD patients and murine models. However, there exists a gap in research concerning the presence and role of microbial infection in the AD retina, which shares common pathogenesis with the brain.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
University of Miami, Miami, FL, USA.
Background: The global ageing population is rising with each year, and with that, the percentage of individuals with Alzheimer's disease (AD) is expected to rise in parallel. Along with age, traumatic brain injury (TBI) is another risk factor for AD. TBI and AD patients demonstrate abnormal inflammatory responses, including that of the inflammasome.
View Article and Find Full Text PDFInflammation
December 2024
Department of Pediatrics, Xijing Hospital, the Fourth Military Medical University, No.127 Changle West Road, Xi'an, 710032, China.
Fibroblast growth factor 21 (FGF21) modulates the inflammatory response in a range of pathological conditions. However, whether FGF21 modulates asthma remains unexplored. This study sought to investigate its function in asthma using an ovalbumin (OVA)-induced mouse model.
View Article and Find Full Text PDFRejuvenation Res
December 2024
Department of Neurology, Jinan Central Hospital, Shandong University, Jinan City, People's Republic of China.
Parkinson's disease (PD) is accompanied by a complex array of nonmotor and motor manifestations. The exploration of anti-inflammatory and antioxidant active ingredient as potential therapeutic interventions in PD-associated mood alterations has gained significant attention. This study aimed to assess the antidepressant and anxiolytic properties of luteolin (LTN), a potent antioxidant and anti-inflammatory component, using a 6-hydroxydopamine (6-OHDA)-induced animal model of PD.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!