AI Article Synopsis

  • Dendrites integrate incoming signals and are thought to act as signal processing units, but their functional boundaries are not fully understood.
  • Research shows that when clusters of dendritic spines are activated, they induce heterosynaptic plasticity that varies based on the distance to neighboring synapses, with closer synapses mainly weakening and farther ones strengthening.
  • The study reveals the role of specific proteins (CaMKII and calcineurin) and nitric oxide as signaling messengers in regulating these synaptic changes, emphasizing the complexity of synaptic strength organization in nearby neurons.

Article Abstract

Dendrites are crucial for integrating incoming synaptic information. Individual dendritic branches are thought to constitute a signal processing unit, yet how neighboring synapses shape the boundaries of functional dendritic units is not well understood. Here, we address the cellular basis underlying the organization of the strengths of neighboring Schaffer collateral-CA1 synapses by optical quantal analysis and spine size measurements. Inducing potentiation at clusters of spines produces NMDA-receptor-dependent heterosynaptic plasticity. The direction of postsynaptic strength change shows distance dependency to the stimulated synapses where proximal synapses predominantly depress, whereas distal synapses potentiate; potentiation and depression are regulated by CaMKII and calcineurin, respectively. In contrast, heterosynaptic presynaptic plasticity is confined to weakening of presynaptic strength of nearby synapses, which requires CaMKII and the retrograde messenger nitric oxide. Our findings highlight the parallel engagement of multiple signaling pathways, each with characteristic spatial dynamics in shaping the local pattern of synaptic strengths.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.celrep.2021.108693DOI Listing

Publication Analysis

Top Keywords

synapses
6
heterosynaptic cross-talk
4
cross-talk pre-
4
pre- postsynaptic
4
postsynaptic strengths
4
strengths segments
4
segments dendrites
4
dendrites dendrites
4
dendrites crucial
4
crucial integrating
4

Similar Publications

Theoretical neuroscientists and machine learning researchers have proposed a variety of learning rules to enable artificial neural networks to effectively perform both supervised and unsupervised learning tasks. It is not always clear, however, how these theoretically-derived rules relate to biological mechanisms of plasticity in the brain, or how these different rules might be mechanistically implemented in different contexts and brain regions. This study shows that the calcium control hypothesis, which relates synaptic plasticity in the brain to the calcium concentration ([Ca2+]) in dendritic spines, can produce a diverse array of learning rules.

View Article and Find Full Text PDF

Biomolecular condensation has emerged as a general principle in organizing biological processes, including immune response. Xu and colleagues recently reported that the cytoplasmic tail of the CD3ɛ subunit of TCR complex, when fused to CAR, can promote CAR condensation by liquid-liquid phase separation. Through sequence engineering, the authors identified modified CD3ɛ sequences that enhance the maturation of the immunological synapse and co-receptor signaling, leading to an improvement of cytotoxicity in vitro and anti-tumor effects in mouse xenograft models.

View Article and Find Full Text PDF

Degradable features are highly desirable to advance next-generation organic mixed ionic-electronic conductors (OMIECs) for transient bioinspired artificial intelligence devices.It is highly challenging that OMIECs exhibit excellent mixed ionic-electronic behavior and show degradability simultaneously.Specially,in OMIECs,doping is often a tradeoff between structural disorder and charge carrier mobilities.

View Article and Find Full Text PDF

Background: Publicly available data are essential for the progress of medical image analysis, in particular for crafting machine learning models. Glioma is the most common group of primary brain tumors, and magnetic resonance imaging (MRI) is a widely used modality in their diagnosis and treatment. However, the availability and quality of public datasets for glioma MRI are not well known.

View Article and Find Full Text PDF

Soft Artificial Synapse Electronics.

Research (Wash D C)

January 2025

Department of Electrical and Computer Engineering, University of Illinois, Urbana-Champaign, Urbana, IL 61801, USA.

Soft electronics, known for their bendable, stretchable, and flexible properties, are revolutionizing fields such as biomedical sensing, consumer electronics, and robotics. A primary challenge in this domain is achieving low power consumption, often hampered by the limitations of the conventional von Neumann architecture. In response, the development of soft artificial synapses (SASs) has gained substantial attention.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!