Sexual and asexual development: two distinct programs producing the same tunicate.

Cell Rep

Institute for Stem Cell Biology and Regenerative Medicine, and Ludwig Center, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Biology, Stanford University, Hopkins Marine Station, Pacific Grove, CA 93950, USA; Chan Zuckerberg Biohub, San Francisco, CA 94158, USA. Electronic address:

Published: January 2021

AI Article Synopsis

  • Colonial tunicates, like Botryllus schlosseri, can develop into adults either through sexual reproduction (embryogenesis) or asexual renewal (blastogenesis) using stem cells.
  • Researchers used transcriptomics (study of RNA) and microscopy to create a detailed map of the molecular and structural changes during both developmental pathways, finding that molecular profiles are mostly different but some timing of organ formation is similar.
  • By comparing B. schlosseri's development with other chordates, the study highlights that even with similar adult forms, the underlying molecular processes can vary significantly, emphasizing the role of stem cells and transcription factors.

Article Abstract

Colonial tunicates are the only chordate that possess two distinct developmental pathways to produce an adult body: either sexually through embryogenesis or asexually through a stem cell-mediated renewal termed blastogenesis. Using the colonial tunicate Botryllus schlosseri, we combine transcriptomics and microscopy to build an atlas of the molecular and morphological signatures at each developmental stage for both pathways. The general molecular profiles of these processes are largely distinct. However, the relative timing of organogenesis and ordering of tissue-specific gene expression are conserved. By comparing the developmental pathways of B. schlosseri with other chordates, we identify hundreds of putative transcription factors with conserved temporal expression. Our findings demonstrate that convergent morphology need not imply convergent molecular mechanisms but that it showcases the importance that tissue-specific stem cells and transcription factors play in producing the same mature body through different pathways.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7949349PMC
http://dx.doi.org/10.1016/j.celrep.2020.108681DOI Listing

Publication Analysis

Top Keywords

developmental pathways
8
transcription factors
8
sexual asexual
4
asexual development
4
development distinct
4
distinct programs
4
programs producing
4
producing tunicate
4
tunicate colonial
4
colonial tunicates
4

Similar Publications

Strigolactones regulate Bambusa multiplex sheath senescence by promoting chlorophyll degradation.

Tree Physiol

January 2025

State Key Laboratory of Tree Genetics and Breeding, Co-Innovation Center for Sustainable Forestry in Southern China, Bamboo Research Institute, Key Lab of National Forestry and Grassland Administration on Subtropical Forest Biodiversity Conservation, School of Life Sciences, Nanjing Forestry University, Nanjing 210037, China.

Culm sheaths are capable of photosynthesis and are an important class of non-leaf organs in bamboo plants. The source-sink interaction mechanism has been found to play an important role in the interaction between culm sheaths and internodes in Bambusa multiplex. Research on the regulatory mechanisms of culm sheath senescence is important for the study of internode growth, but reports in this regard are limited.

View Article and Find Full Text PDF

Chlorpyrifos (CPF) is an organophosphorus pesticide of concern because many in vivo animal studies have demonstrated developmental toxicity exerted by this substance; however, despite its widespread use, evidence from epidemiological studies is still limited. In this study, we have collected all the information generated in the twenty-first century on the developmental toxicity of CPF using new approach methodologies. We have critically evaluated and integrated information coming from 70 papers considering human, rodent, avian and fish models.

View Article and Find Full Text PDF

Developmental basis of natural tooth shape variation in cichlid fishes.

Naturwissenschaften

January 2025

Institute of Bioengineering and Biosciences, School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA.

While most dentate non-mammalian vertebrates possess simple conical teeth, some demonstrate complex tooth shapes. Lake Malawi cichlid fishes are an extreme example of this, exhibiting a myriad of tooth shapes driven by an ecologically derived rapid evolution of closely related but distinct species. Tooth shape in mammals is generally considered to be established by signaling centers called primary and secondary enamel knots, which are not believed to be present in non-mammalian vertebrates.

View Article and Find Full Text PDF

Increasing variability down serially segmented structures, such as mammalian molar teeth and vertebrate limb segments, is a much-replicated pattern. The same phenotypic pattern has conflicting interpretations at different evolutionary scales. Macroevolutionary patterns are thought to reflect greater evolutionary potential in later-forming segments, but microevolutionary patterns are thought to reflect less evolutionary potential and greater phenotypic plasticity.

View Article and Find Full Text PDF

Sensory neurons must be reproducibly specified to permit accurate neural representation of external signals but also able to change during evolution. We studied this paradox in the olfactory system by establishing a single-cell transcriptomic atlas of all developing antennal sensory lineages, including latent neural populations that normally undergo programmed cell death (PCD). This atlas reveals that transcriptional control is robust, but imperfect, in defining selective sensory receptor expression.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!