Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Growing functionalized self-assembled monolayers (SAMs) with fewer defects and lower cost is the focus of ongoing investigations. In the present study, molecular dynamics simulations were performed to investigate the process of SAM formation on a gold substrate from mixed alkanethiolates in ethanol solution. Using the mixed-SAM system of 11-mercaptoundecanoic acid (MUA) with either 1-decanethiol (C9CH3) or 6-mercaptohexanol (C6OH) in a 3:7 ratio as the standard SAM model, we systematically investigated the effects of the concentration, chain length, functional group, and an external electric field on SAM growth. The results showed that the initial growth rate and surface coverage of the SAM are dependent on the ligand concentration. At a certain high concentration (about 1.2-1.5 times the minimum concentration), the final surface coverage is optimal. Reducing the chain length and increasing the proportion of hydrophobic diluting molecules are effective ways to improve the surface coverage, but the compositional ligands have to be changed, which may not be desirable for the functional requirements of SAMs. Furthermore, by investigating the behavior of the alkanethiolates and ethanol solvent under an applied external field, we find that a strong electric field with a proper field direction can facilitate the generation of defect-free monolayers. These findings will contribute to the understanding of mixed-SAM formation and provide insight into experimental design for efficient and effective SAM formation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.langmuir.0c03414 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!