Quantification of nanoscale forces in lectin-mediated bacterial attachment and uptake into giant liposomes.

Nanoscale

Faculty of Biology, University of Freiburg, Schänzlestraße 1, 79104 Freiburg, Germany. and Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Schänzlestraße 18, 79104 Freiburg, Germany and Freiburg Center for Interactive Materials and Bioinspired Technologies (FIT), University of Freiburg, Georges-Köhler-Allee 105, 79110 Freiburg, Germany.

Published: February 2021

Interactions of the bacterial lectin LecA with the host cells glycosphingolipid Gb3 have been shown to be crucial for the cellular uptake of the bacterium Pseudomonas aeruginosa. LecA-induced Gb3 clustering, referred to as lipid zipper mechanism, leads to full membrane engulfment of the bacterium. Here, we aim for a nanoscale force characterization of this mechanism using two complementary force probing techniques, atomic force microscopy (AFM) and optical tweezers (OT). The LecA-Gb3 interactions are reconstituted using giant unilamellar vesicles (GUVs), a well-controlled minimal system mimicking the plasma membrane and nanoscale forces between either bacteria (PAO1 wild-type and LecA-deletion mutant strains) or LecA-coated probes (as minimal, synthetic bacterial model) and vesicles are measured. LecA-Gb3 interactions strengthen the bacterial attachment to the membrane (1.5-8-fold) depending on the membrane tension and the applied technique. Moreover, significantly less energy (reduction up to 80%) is required for the full uptake of LecA-coated beads into Gb3-functionalized vesicles. This quantitative approach highlights that lectin-glycolipid interactions provide adequate forces and energies to drive bacterial attachment and uptake.

Download full-text PDF

Source
http://dx.doi.org/10.1039/d0nr07726gDOI Listing

Publication Analysis

Top Keywords

bacterial attachment
12
nanoscale forces
8
attachment uptake
8
leca-gb3 interactions
8
bacterial
5
quantification nanoscale
4
forces lectin-mediated
4
lectin-mediated bacterial
4
uptake
4
uptake giant
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!