Effect of a Superhydrophobic Surface Structure on Droplet Jumping Velocity.

Langmuir

Institute of Chemical Engineering, Dalian University of Technology, Dalian 116024, China.

Published: February 2021

The coalescence-induced droplet jumping on superhydrophobic surfaces is fundamentally significant from an academic or practical viewpoint. However, approaches to enhance droplet jumping velocity are very limited. In this work, the effect of structural parameters of the triangular prism on droplet jumping is studied systematically. The results indicate that droplet jumping velocity can be greatly increased by exploiting structure effects, which is a promising reinforcement method. When the height and apex angle of the triangular prism are fixed, the droplet jumping velocity increases with the length of the triangular prism until a plateau is reached. The ratio of translational kinetic energy to released surface energy during droplet jumping is determined by the apex angle and the height of the triangular prism, which is more effective with a smaller apex angle and a larger height. The results are supposed to provide guidelines for optimization of superhydrophobic surfaces.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.langmuir.0c03094DOI Listing

Publication Analysis

Top Keywords

droplet jumping
28
jumping velocity
16
triangular prism
16
apex angle
12
superhydrophobic surfaces
8
droplet
7
jumping
7
superhydrophobic surface
4
surface structure
4
structure droplet
4

Similar Publications

A Novel-Potential Wave-Bump Yarn of Plain Weave Fabric for Fog Harvesting.

Molecules

October 2024

Key Laboratory of Textile Science and Technology, Ministry of Education, College of Textiles, Donghua University, Shanghai 201620, China.

With the variety of fibers and fabrics, the studies of the surface structure of the textile yarns, the weave fabric, and their surface wettability are still potential factors to improve and optimize the fog harvesting efficiency. In this work, inspired by the fog harvesting behavior of the desert beetle dorsal surface, a wavy-bumpy structure of post-weave yarn (obtained from woven fabric) was reported to improve large droplet growth (converge) efficiency. In which, this study used tetrabutyl titanate (Ti(OCH)) to waterproof, increase hydrophobicity, and stabilize the surface of yarns and fabric (inspired by the feather structure and lotus leaf surface).

View Article and Find Full Text PDF

Limits of dropwise condensation heat transfer on dry nonwetting surfaces.

iScience

November 2024

Advanced Materials and Technologies Laboratory, Department of Mechanical Engineering, Virginia Tech, Blacksburg, VA 24061-0238, USA.

Surface condensation is ubiquitous in applications such as power generation and desalination. Nonwetting surfaces have been studied extensively for their dropwise condensation potential with reports of dramatic improvements relative to the classical Nusselt equation for film-wise condensation that has long served as a reference theoretical on the condensation heat transfer coefficient. However, a theoretical on the possible condensation heat transfer over a given surface is not available.

View Article and Find Full Text PDF

Supercooled condensation droplets sliding on frost: Origin and anti-frosting effect observed on Cotinus coggygria leaf.

iScience

October 2024

Laboratory of Bioinspired, Bionic, Nano, Meta, Materials & Mechanics, Department of Civil, Environmental and Mechanical Engineering, University of Trento, Via Mesiano, 77, 38123 Trento, Italy.

Fascinated by the purple color, water-repellent, and self-cleaning properties of leaves, we studied their morphology, wetting, and condensation frosting. Wax nanotubules confer high contact angles, enabling coalescence-induced condensation droplet (out-of-plane) jumping, which, as known, contributes to slowing down frost. Another type of movement-this time in-plane-becomes predominant in reducing the frosting velocity ( ) within a sub-cooling temperature range.

View Article and Find Full Text PDF

Microballistics in fungi and plants.

Curr Biol

October 2024

Western Program and Department of Biology, Miami University, Oxford, OH 45056, USA. Electronic address:

Ballistic movements in biology are powered by muscle contraction, explosive chemical reactions, the formation and collapse of gas bubbles, merger of fluid droplets, and release of hydrostatic pressure. At the macroscopic end of this kinetic carnival we find jumping fleas, violent spider jaws, shrimp claw hammers, and squirting beetles and cucumbers. The speeds are startling, but the mechanisms seem familiar because they occur on a spatial scale that overlaps with our physical experiences.

View Article and Find Full Text PDF

Material surfaces maintaining a liquid super-repellent is crucial in fields such as anti-fouling, drag reduction, and heat transfer. Superhydrophobic surfaces provide an effective approach but suffer from phase change-induced wetting transitions, hindering their practical applications. In this work, Biphilic armored superhydrophobic surfaces (BASS) are designed by integrating hydrophilic interconnected surface frames with superhydrophobic nanostructures.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!