Protein kinase signalling, which transduces external messages to mediate cellular growth and metabolism, is frequently deregulated in human disease, and specifically in cancer. As such, there are 77 kinase inhibitors currently approved for the treatment of human disease by the FDA. Due to their historical association as the receptors for the tumour-promoting phorbol esters, PKC isozymes were initially targeted as oncogenes in cancer. However, a meta-analysis of clinical trials with PKC inhibitors in combination with chemotherapy revealed that these treatments were not advantageous, and instead resulted in poorer outcomes and greater adverse effects. More recent studies suggest that instead of inhibiting PKC, therapies should aim to restore PKC function in cancer: cancer-associated PKC mutations are generally loss-of-function and high PKC protein is protective in many cancers, including most notably KRAS-driven cancers. These recent findings have reframed PKC as having a tumour suppressive function. This review focusses on a potential new mechanism of restoring PKC function in cancer - through targeting of its negative regulator, the Ser/Thr protein phosphatase PHLPP. This phosphatase regulates PKC steady-state levels by regulating the phosphorylation of a key site, the hydrophobic motif, whose phosphorylation is necessary for the stability of the enzyme. We also consider whether the phosphorylation of the potent oncogene KRAS provides a mechanism by which high PKC expression may be protective in KRAS-driven human cancers.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8086891 | PMC |
http://dx.doi.org/10.1042/BCJ20190765 | DOI Listing |
PLoS One
January 2025
College of Veterinary Medicine, Jilin Agricultural University, Changchun, China.
Porcine epidemic diarrhea virus (PEDV) is a significant pathogen affecting swine, causing severe economic losses worldwide. This study explores the regulatory role of miRNA-328-3p to ZO-1 expression and its impact on PEDV proliferation via the PLC-β1-PKC pathway in IPEC-J2 cells. We found that miRNA-328-3p can target ZO-1, influencing its expression and subsequently affecting the integrity of tight junctions in the cells.
View Article and Find Full Text PDFElife
January 2025
Department of Diabetes and Metabolic Diseases, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan.
Cigarette smoking is a well-known risk factor inducing the development and progression of various diseases. Nicotine (NIC) is the major constituent of cigarette smoke. However, knowledge of the mechanism underlying the NIC-regulated stem cell functions is limited.
View Article and Find Full Text PDFAndrology
January 2025
Centro de Estudios Farmacológicos y Botánicos (CEFYBO), Facultad de Medicina-Universidad de Buenos Aires (UBA/CONICET), Buenos Aires, Argentina.
Background: Endocannabinoids like anandamide (AEA), among other lipids, are recognized signaling molecules that participate in reproductive events.
Objectives: Our aims were to characterize orphan G protein-coupled receptor (GPR55) presence; investigate GPR55 activation by AEA and determine GPR55 role in the bovine sperm function.
Materials And Methods: GPR55 presence was assessed by immunocytochemistry.
PLoS One
December 2024
Central Department of Zoology, Institute of Science and Technology, Tribhuvan University, Kirtipur, Kathmandu, Nepal.
Mol Biol Rep
December 2024
Department of Basic Medical Sciences, Neyshabur University of Medical Sciences, Neyshabur, Iran.
This study conducts an in-depth review of the correlation between testis tissue changes and circulating microRNAs (miRNA) in diabetes-induced male reproductive complications, drawing upon both animal and clinical studies. The original articles published in English that specifically investigate miRNAs linked to male infertility in humans or animals with either type I or ΙΙ diabetes mellitus were included. The relevant articles were gathered from the PubMed, Google Scholar, Cochrane Library, and ScienceDirect databases.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!