A pectin-rich dietary fiber from sisal waste (P-SF), containing 11.8% pectin, was produced by a sequential enzymatic-ultrasonic process. P-SF was effective in adsorbing Pb from aqueous solution with a maximum adsorption amount of 184 mg g. Adsorption isotherms were fitted well by the Langmuir equation, and the adsorption kinetics could be described by a pseudo-second-order model. X-ray photoelectron spectroscopy and energy dispersive spectroscopy suggested that Pb was adsorbed by P-SF via ion exchange, complexation and mineral precipitation. Dietary supplementation with 10% (w/w) P-SF in basal feed led to a significant decrease in Pb in the brain, liver and kidney. P-SF has greater in vivo efficacy of Pb removal as compared to commercial soybean dietary fiber. The reduction of brain Pb level by P-SF was as effective as by a Pb excretion drug. These findings suggested that P-SF has a great potential to be used as a dietary supplement to cope with Pb poisoning.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/d0fo02829k | DOI Listing |
Polymers (Basel)
December 2024
Department of Industrial Engineering, School of Engineering, King Mongkut's Institute of Technology Ladkrabang, Bangkok 10520, Thailand.
This study explored the tensile and impact strength of polylactic acid (PLA) through the incorporation of sisal and coir fibers. Hybrid natural fiber composites were prepared using PLA as the matrix and sisal and coir fibers as the reinforcements. The hybrid composites were prepared with an internal mixer, followed by compression molding.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Civil, Environmental, and Architectural Engineering, Worcester Polytechnic Institute, Worcester, USA.
Sisal fiber moisture sensitivity and degradation are treated by alkaline and pozzolanic methods, such as silica fume and kaolin surface coating. However, it is novel that the treatment of sisal fiber by calcined bentonite slurry can coat sisal fiber from moisture and protect it from cement hydration by consuming free lime and reducing cement matrix alkalinity. Therefore, the present study treated sisal fibers with calcined bentonite slurry and investigated the effect of using different lengths and doses of treated and raw sisal fibers in a mortar.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
Mechanical and Industrial Engineering Department, Indian Institute of Technology Roorkee, Uttarakhand 247667, India. Electronic address:
Plant-based macromolecules such as lignocellulosic fibers are one of the promising bio-resources to be utilized as reinforcement for developing sustainable composites. However, due to their hydrophilic nature and weak interfacial bonding with polymer matrices, these fibers are mostly incompatible with biopolymers. The current research endeavor explores the novel eco-friendly oxalic acid (CHO.
View Article and Find Full Text PDFHeliyon
November 2024
Department of Civil Engineering, Faculty of Engineering, King Mongkut's University of Technology Thonburi, Bangkok, 10140, Thailand.
This study introduces an innovative approach to enhancing recycled aggregate concrete (RAC) by incorporating nanosilica (NS) and natural fibers (NF), specifically sisal fiber (SF) and palm fiber (PF). This novel combination aims to overcome the inherent limitations of RAC, such as reduced strength and durability, while promoting sustainability in construction. The research focuses on evaluating the mechanical properties of RAC, including compressive and flexural strengths, through the integration of NS and NF.
View Article and Find Full Text PDFPolymers (Basel)
November 2024
Department of Engineering, University of Palermo, Viale Delle Scienze, 90128 Palermo, Italy.
Within the range of composite laminates for structural applications, sandwich laminates are a special category intended for applications characterized by high flexural stresses. As it is well known from the technical literature, structural sandwich laminates have a simple configuration consisting of two skins of very strong material, to which the flexural strength is delegated, between which an inner layer (core) of light material with sufficient shear strength is interposed. As an example, a sandwich configuration widely used in civil, naval, and mechanical engineering is that obtained with fiberglass skins and a core of various materials, such as polyurethane foam or another lightweight material, depending on the application.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!