Impact of S-Vacancies on the Charge Injection Barrier at the Electrical Contact with the MoS Monolayer.

ACS Nano

Institute of Materials Research & Engineering (IMRE), Agency for Science, Technology, and Research (A*STAR), 2 Fusionopolis Way, #08-03 Innovis, Singapore 138634, Singapore.

Published: February 2021

Making electrical contacts to semiconducting transition metal dichalcogenides (TMDCs) represents a major bottleneck for high device performance, often manifesting as strong Fermi level pinning and high contact resistance. Despite intense ongoing research, the mechanism by which lattice defects in TMDCs impact the transport properties across the contact-TMDC interface remains unsettled. Here we study the impact of S-vacancies on the electronic properties at a MoS monolayer interfaced with graphite by photoemission spectroscopy, where the defect density is selectively controlled by Ar sputtering. A clear reduction of the MoS core level and valence band binding energies is observed as the defect density increases. The experimental results are explained in terms of (i) gap states' energy distribution and (ii) S-vacancies' electrostatic disorder effect. Our model indicates that the Fermi level pinning at deep S-vacancy gap states is the origin of the commonly reported large electron injection barrier (∼0.5 eV) at the MoS ML interface with low work function metals. At the contact with high work function electrodes, S-vacancies do not significantly affect the hole injection barrier, which is intrinsically favored by Fermi level pinning at shallow occupied gap states. Our results clarify the importance of S-vacancies and electrostatic disorder in TMDC-based electronic devices, which could lead to strategies for optimizing device performance and production.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsnano.0c07982DOI Listing

Publication Analysis

Top Keywords

injection barrier
12
fermi level
12
level pinning
12
impact s-vacancies
8
mos monolayer
8
device performance
8
defect density
8
electrostatic disorder
8
gap states
8
work function
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!