Multiferroic heterostructures based on the strain-mediated mechanism present ultralow heat dissipation and large magnetoelectric coupling coefficient, two conditions that require endless improvement for the design of fast nonvolatile random access memories with reduced power consumption. This work shows that a structure consisting of a [Pb(MgNb)O]-[PbTiO] (001) substrate on which a crystalline FeGa(001)/MgO(001) bilayer is deposited exhibits a giant magnetoelectric coupling coefficient of order 15 × 10 s m at room temperature. That result is a 2-fold increment over the previous highest value. The spatial orientation of the magnetization vector in the epitaxial FeGa film is switched 90° with the application of electric field. The symmetry of the magnetic anisotropy is studied by the angular dependence of the remanent magnetization, demonstrating that poling the sample generates a switchable uniaxial magnetoelastic anisotropy in the film that overcomes the native low 4-fold magnetocrystalline anisotropy energy. Magnetic force microscopy shows that the switch of the easy axis activates the displacement of domain walls and the domain structures remain stable after that point. This result highlights the interest in single-crystalline structures including materials with large magnetoelastic coupling and small magnetocrystalline anisotropy for low-energy-consuming spintronic applications.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8483440 | PMC |
http://dx.doi.org/10.1021/acsami.0c18777 | DOI Listing |
Adv Mater
January 2025
Key Laboratory of Organic Integrated Circuits, Ministry of Education, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, Tianjin, 300072, P. R. China.
Developing purely organic room-temperature magnetic semiconductors has been a long-sought goal in the material community toward the simultaneous control of spin and charge. Organic cocrystals, known for their structural versatility and multifunctionality, are ideal candidates for these magnetoelectric coupling applications. However, organic room-temperature magnetic semiconductor cocrystals have rarely been reported, and their mechanisms remain poorly understood due to the complexity of cocrystal structures.
View Article and Find Full Text PDFIEEE J Solid-State Circuits
November 2024
Department of Electrical and Computer Engineering, Rice University, Houston TX, 77005, USA.
Miniature bioelectronic implants promise revolutionary therapies for cardiovascular and neurological disorders. Wireless power transfer (WPT) is a significant method for miniaturization, eliminating the need for bulky batteries in today's devices. Despite successful demonstrations of millimetric battery-free implants in animal models, the robustness and efficiency of WPT are known to degrade significantly under misalignment incurred by body movements, respiration, heart beating, and limited control of implant orientation during surgery.
View Article and Find Full Text PDFNano Lett
January 2025
Smart Ferroic Materials Center, Physics Department and Institute for Nanoscience and Engineering, University of Arkansas, Fayetteville, Arkansas 72701, United States.
Nonvolatile control of spin order or spin excitations offers a promising avenue for advancing spintronics; however, practical implementation remains challenging. In this Letter, we propose a general framework to realize electrical control of magnons in 2D magnetic insulators. We demonstrate that in bilayer ferromagnetic insulators with strong spin-layer coupling, the electric field can effectively manipulate the spin exchange interactions between the layers, enabling nonvolatile control of the corresponding magnons.
View Article and Find Full Text PDFNano Lett
January 2025
Department of Physics, Washington University in St. Louis, St. Louis, Missouri 63130, United States.
Recent studies have demonstrated the ability to switch weakly coupled interlayer magnetic orders by using electric polarization in insulating van der Waals heterostructures. However, controlling strongly coupled intralayer magnetic orders remains a significant challenge. In this work, we propose that frustrated multiferroic heterostructures can exhibit enhanced intralayer magnetoelectric coupling.
View Article and Find Full Text PDFJ Phys Condens Matter
January 2025
Department of Physics, University of Kerala, Karyavattom 695581, Thiruvananthapuram, Kerala, India.
The effects of Na doping on the structure magnetic, electric, and magnetoelectric properties of GaFeOwere studied. Rietveld refinement of the XRD data reveals the formation of a single-phase trigonal structure with no impurity on Na doping up to 50% and a significant increase in lattice strain with doping. FTIR and Raman analysis further supported the phase purity of the samples.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!