Objective: To determine the role of estrogens in myofiber cross-sectional area (CSA) of the pubococcyegeus (Pcm) and iliococcygeus muscles (Icm).

Methods: In Experiment 1, we excised the Pcm and Icm during the metestrus and proestrus stages of the estrous cycle to measure the myofiber CSA. In Experiment 2, we allocated other rats into the following groups: sham (Sh), ovariectomized (OVX), OVX plus 1,4,6-androstatriene-3,17-dione (ATD; OVX + ATD), an aromatase inhibitor, and OVX plus estradiol benzoate (OVX + EB). We carried out appropriate statistical tests to determine significant differences ( ≤ 0.05) in variables measured for both Experiments.

Results: The Pcm myofiber CSA at proestrus was higher than at metestrus, while the Icm myofiber CSA did not change. Ovariectomy increased the Pcm myofiber CSA, which was exacerbated with the ATD administration. The EB supplementation successfully reversed the ovariectomy-induced enlargement of the CSA. No significant changes were detected for the Icm myofiber CSA.

Conclusions: Fluctuating ovarian steroid levels at the estrus cycle significantly influence the CSA myofiber of the Pcm but not that of the Icm. Estrogen actions, having a gonadal or extragonadal origin, influence importantly the CSA of the Pcm.

Download full-text PDF

Source
http://dx.doi.org/10.1080/09513590.2021.1875427DOI Listing

Publication Analysis

Top Keywords

myofiber csa
16
myofiber
8
myofiber cross-sectional
8
cross-sectional area
8
csa
8
pcm icm
8
pcm myofiber
8
icm myofiber
8
pcm
6
differential estrogen-related
4

Similar Publications

Introduction: Down syndrome (DS) is associated with difficulties with feeding during infancy and childhood. Weaning, or transitioning from nursing to independent deglutition, requires developmental progression in tongue function. However, little is known about whether postnatal tongue muscle maturation is impacted in DS.

View Article and Find Full Text PDF

Background: Skeletal muscle atrophy significantly affects quality of life and has socio-economic and health implications. This study evaluates the effects of entacapone (ENT) on skeletal muscle atrophy linked with oxidative stress and proteolysis.

Methods: C2C12 cells were treated with dexamethasone (Dex) to simulate muscle atrophy.

View Article and Find Full Text PDF

Aerobic Training Alleviates Muscle Atrophy by Promoting the Proliferation of Skeletal Muscle Satellite Cells in Myotonic Dystrophy Type 1 by Inhibiting Glycolysis via the Upregulation of MBNL1.

Curr Stem Cell Res Ther

December 2024

Center for Rehabilitation Medicine, Rehabilitation & Sports Medicine Research Institute of Zhejiang Province, Department of Rehabilitation Medicine, Zhejiang Provincial People's Hospital(Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China.

Background: Skeletal muscle atrophy in myotonic dystrophy type 1 (DM1) is caused by abnormal skeletal muscle satellite cell (SSC) proliferation due to increased glycolysis, which impairs muscle regeneration. In DM1, RNA foci sequester muscleblind-like protein 1 (MBNL1) in the nucleus, inhibiting its role in regulating SSC proliferation. Aerobic training reduces glycolysis and increases SSC proliferation and muscle fiber volume.

View Article and Find Full Text PDF

Background: Hip osteoarthritis patients display higher levels of fatty infiltration (FI) in the gluteus minimus (GM) compared to other hip muscles. We investigated specific histological factors such as fiber type composition and collagen deposition, and functional outcomes like muscle strength and activation associated with FI in these patients.

Methods: In twelve men (67 ± 6 y) undergoing total hip replacement (THR), hip and knee muscle strength and activation (electromyography, EMG) were assessed bilaterally.

View Article and Find Full Text PDF

Background: Sarcopenia is a muscle disease characterized by reduction of muscle strength and muscle mass. In RA, 25.9 to 43.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!