A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Cu-MOF Material Constructed with a Triazine Polycarboxylate Skeleton: Multifunctional Identify and Microdetecting of the Aromatic Diamine Family (,,-Phenylenediamine) Based on the Luminescent Response. | LitMetric

Organic aromatic amines are widely used in various fields such as pharmaceuticals, pesticides, dyes, and tobacco smoke. The pollution of organic amines has become a problem that cannot be ignored, due to the extensive harmful effects on the environment and public health, which has become one of the most concerned frontier fields in the world. Identifying and microdetecting -phenylenediamine (OPD), -phenylenediamine (MPD), and -phenylenediamine (PPD) using MOFs have rarely been reported. On the basis of the blue emission properties of Cu-TBDA constructed with 5,5'-((6-chloro-1,3,5-triazine-2,4-diyl)bis(azanediyl))diisophthalic acid (HTBDA) ligand, Cu-TBDA was studied primarily to identify and detect aromatic diamine family as a multifunctional chemical sensor. Interestingly, Cu-TBDA has a very high selectivity and sensitivity to OPD and MPD with a low limit of detection (5.00 μM for OPD and 1.77 μM for MPD). Especially for OPD, Cu-TBDA has a unique switching function for it. When the concentration of OPD is less than 9.1 × 10 M, the fluorescence response of Cu-TBDA suspension exhibit enhanced. However, when the concentration of OPD is more than 9.1 × 10 M, the emission intensity displays quenching phenomenon. Therefore, Cu-TBDA as a chemical sensor not only has recognition and detection functions for organic aromatic amines but also first exhibits turn-on and -off sensing behavior toward OPD.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.inorgchem.0c03753DOI Listing

Publication Analysis

Top Keywords

aromatic diamine
8
diamine family
8
organic aromatic
8
aromatic amines
8
chemical sensor
8
concentration opd
8
opd
7
cu-tbda
6
cu-mof material
4
material constructed
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!