Based on observing the cytological characteristics of the flower buds of the functional male sterile line (S13) and the fertile line (F142) in eggplant, it was found that the disintegration period of the annular cell clusters in S13 anther was 2 days later than that of F142, and the cells of stomiun tissue and tapetum in F142 disintegrated on the blooming day, while it did not happen in S13. The comparative transcriptomic analysis showed that there were 1 436 differential expression genes (DEGs) (651 up-regulated and 785 down-regulated) in anthers of F142 and S13 at 8, 5 days before flowering and flowering day. The significance analysis of GO enrichment indicated that there were more unigene clusters involved in single cell biological process, metabolism process and cell process, and more catalytic activity and binding function were involved in molecular functions. Through KEGG annotation we found that the common DEGs were mainly enriched in the biosynthesis of secondary metabolites, metabolic pathway, protein processing in endoplasmic reticulum, biosynthesis of amino acids, carbon metabolism and plant hormone signal transduction. The fifteen genes co-expression modules were identified from 16 465 selected genes by weighted gene co-expression network analysis (WGCNA), three of which (Plum2, Royalblue and Bisque4 modules) were highly related to S13 during flower development. KEGG enrichment showed that the specific modules could be enriched in phenylpropanoid biosynthesis, photosynthesis, porphyrin and chlorophyll metabolism, α-linolenic acid metabolism, polysaccharide biosynthesis and metabolism, fatty acid degradation and the mutual transformation of pentose and glucuronic acid. These genes might play important roles during flower development of S13. It provided a reference for further study on the mechanism of anther dehiscence in eggplant.

Download full-text PDF

Source
http://dx.doi.org/10.13345/j.cjb.200393DOI Listing

Publication Analysis

Top Keywords

metabolic pathway
8
functional male
8
flower development
8
s13
6
genes
5
metabolism
5
[analysis differential
4
differential genes
4
genes metabolic
4
pathway functional
4

Similar Publications

Background: Drought stress is a major environmental constraint affecting crop yields. Plants in agricultural and natural environments have developed various mechanisms to cope with drought stress. Identifying genes associated with drought stress tolerance in potato and elucidating their regulatory mechanisms is crucial for the breeding of new potato germplasms.

View Article and Find Full Text PDF

Construction and transcriptomic analysis of salinity-induced lipid-rich flocculent microalgae.

J Environ Manage

January 2025

School of Petrochemical Engineering & Environment, Zhejiang Ocean University, Zhoushan, 316000, China; National & Local Joint Engineering Research Center of Harbor Oil & Gas Storage and Transportation Technology, Zhejiang Key Laboratory of Petrochemical Environmental Pollution Control, Zhoushan, 316000, China. Electronic address:

The lack of cost-effective nutrient sources and harvesting methods is currently a major obstacle to the production of sustainable biofuels from microalgae. In this study, Chlorella pyrenoidosa was cultured with saline wastewater in a stirred photobioreactor, and lipid-rich flocculent microalgae particles were successfully constructed. As the influent salinity of the photobioreactor increased from 0% to 3%, the particle size and sedimentation rate of flocculent microalgae particles gradually increased, and the lipid accumulation of microalgae also increased gradually.

View Article and Find Full Text PDF

Wu-Mei-Wan enhances brown adipose tissue function and white adipose browning in obese mice via upregulation of HSF1.

Chin Med

January 2025

Department of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China.

Background: This research aims to explore the anti-obesity potential of Wu-Mei-Wan (WMW), particularly its effects on adipose tissue regulation in obese mice induced by a high-fat diet (HFD). The study focuses on understanding the role of heat shock factor 1 (HSF1) in mediating these effects.

Methods: HFD-induced obese mice were treated with WMW.

View Article and Find Full Text PDF

Metabolic engineering of Priestia megaterium for 2'-fucosyllactose production.

Microb Cell Fact

January 2025

Department of Chemical & Biological Engineering, Korea University, Seoul, 136-763, Korea.

Background: 2'-Fucosyllactose (2'-FL) is a predominant human milk oligosaccharide that significantly enhances infant nutrition and immune health. This study addresses the need for a safe and economical production of 2'-FL by employing Generally Recognized As Safe (GRAS) microbial strain, Priestia megaterium ATCC 14581. This strain was chosen for its robust growth and established safety profile and attributing suitable for industrial-scale production.

View Article and Find Full Text PDF

Hyperoxia-activated Nrf2 regulates ferroptosis in intestinal epithelial cells and intervenes in inflammatory reaction through COX-2/PGE2/EP2 pathway.

Mol Med

January 2025

Department of Gastroenterology and Medical Research Center, Liaoning Key Laboratory of Research and Application of Animal Models for Environmental and Metabolic Diseases, ShengJing Hospital of China Medical University, SanHao Street No. 36, HePing District, Shenyang, 110000, Liaoning, China.

The lack of knowledge about the mechanism of hyperoxia-induced intestinal injury has attracted considerable attention, due to the potential for this condition to cause neonatal complications. This study aimed to explore the relationship between hyperoxia-induced oxidative damage and ferroptosis in intestinal tissue and investigate the mechanism by which hyperoxia regulates inflammation through ferroptosis. The study systematically evaluated the effects of hyperoxia on oxidative stress, mitochondrial damage, ferroptosis, and inflammation of intestinal epithelial cells both in vitro and in vivo.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!