River Ganga is one of the largest and most sacred rivers of India. This river is largely affected by anthropogenic activities causing significant increase in water pollution. The impact of drains discharging polluted water on the bacterial community dynamics in the river remains unexplored. To elucidate this, the targeted 16S rRNA V3-V4 variable region amplicon sequencing and bioinformatic analysis were performed using water from upstream, drain, and downstream of river Ganga. Analysis revealed significant difference in relative abundances of bacterial communities. The increase in bacterial abundance and alpha diversity was detected in the downstream compared to the upstream. Environmental factors were found significantly different between upstream and downstream water. At the phyla level, highly abundant taxa such as Proteobacteria, Actinobacteria, Planctomycetes, Bacteroidetes, and Verrucomicrobia were observed. Bacterial genera like Prevotella, Bacteroides, Blautia, and Faecalibacterium (fecal indicator) had higher abundance in the downstream site. Network co-occurrence revealed that bacterial communities have a modular profile with reduced interaction in drain and downstream water. The network of co-occurring bacterial communities consists of 283 nodes with edge connectivity of 6900, 7074, and 5294 in upstream, drain, and downstream samples, respectively. Upstream communities exhibited the highest positive interaction followed by the drain and the downstream sites. Additionally, highly abundant pathogenic species such as Acinetobacter baumannii and Prevotella copri were also detected in all samples. This study suggests the drain to be allochthonous pollution vector that significantly contributes to bacterial community enrichment. From the results of this study, it is apparent that the lotic water may be used as the ecological reference to understand and monitor the variations in the bacterial communities and their co-occurrence dynamics in the fresh water ecosystems.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s11356-021-12342-w | DOI Listing |
Insects
January 2025
Program in Ecology and Environmental Science and Large River Studies Center, Department of Biology, Winona State University, Winona, MN 55987, USA.
Prior to implementing watershed-wide projects to reduce the impacts of agriculture on regional streams and rivers, stream habitats and benthic aquatic macroinvertebrate communities were assessed at 15 sites on the South Branch Root River and its major tributaries in southeastern Minnesota, USA. Triplicate kick-net samples were collected from each site during three time periods (1998, 1999, 2006/2008) and stream habitats were inventoried within 150 m long sections at each site. In total, 26,760 invertebrates representing 84 taxa were collected and used to rate stream sites using a regional multi-metric benthic index of biotic integrity (BIBI).
View Article and Find Full Text PDFSci Total Environ
January 2025
Camborne School of Mines, Department of Earth and Environmental Sciences, University of Exeter, Penryn TR10 9FE, UK; Environment and Sustainability Institute, University of Exeter, Penryn TR10 9FE, UK.
Acid mine drainage (AMD) is a worldwide problem that degrades river systems and is difficult and expensive to remediate. To protect affected catchments, it is vital to understand the behaviour of AMD-related metal(loid) contaminants as a function of space and time. To address this, the sources, loads and transport mechanisms of arsenic (As), copper (Cu), zinc (Zn), iron (Fe) and sulfur (S) in a representative AMD-affected catchment (the Carnon River in Cornwall, UK) were determined over a 12-month sampling period and with 22 years of monitoring data collected by the Environment Agency (England) (EA).
View Article and Find Full Text PDFEnviron Pollut
January 2025
Cardiff University, School of Engineering, Hydro-Environmental Research Centre, Cardiff, Wales, UK.
Microplastics (MPs) are ubiquitous in river and freshwater ecosystems. However, the hydraulic and hydrological mechanisms that regulate the activation and emissions of MPs from both the land surface and subsurface into rivers are not well understood. This study aims to quantify the instream MP concentration and MP load in a remote headwater catchment river (Taff Bargoed, Wales, UK), which drains the UK's largest opencast coal mine (Ffos-y-fran), over a two-year period.
View Article and Find Full Text PDFIntegr Environ Assess Manag
January 2025
United States Geological Survey, Upper Midwest Water Science Center, Madison, WI, United States.
Aircraft anti-icers and pavement deicers improve the safety of airport operations during winter precipitation events. Runoff containing these products can contribute elevated biochemical oxygen demand (BOD) to receiving streams. We monitored runoff from Milwaukee Mitchell International Airport at one upstream site, three outfall sites, and one downstream site from 2005 to 2022 for BOD, chemical oxygen demand (COD), and freezing point depressants used in deicing and anti-icing fluids to determine the primary sources of BOD and COD in the receiving stream.
View Article and Find Full Text PDFArthritis Rheumatol
January 2025
Division of Rheumatology, Department of Medicine.
Objective: Photosensitivity occurs in ~75% of lupus patients. Although ultraviolet light radiation (UVR) stimulates Type I interferon (IFN-I) in the skin, how UVR induced skin inflammation leads to downstream effects is poorly understood. Tissue inflammation causes DC to migrate from organs to draining lymph nodes (dLN) including a recently identified inflammatory DC subset (inf cDC2) that are potent antigen presenting cells.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!