While direct local communication is very important for the organization of robot swarms, so far it has mostly been used for relatively simple tasks such as signaling robots preferences or states. Inspired by the emergence of meaning found in natural languages, more complex communication skills could allow robot swarms to tackle novel situations in ways that may not be a priori obvious to the experimenter. This would pave the way for the design of robot swarms with higher autonomy and adaptivity. The state of the art regarding the emergence of communication for robot swarms has mostly focused on offline evolutionary approaches, which showed that signaling and communication can emerge spontaneously even when not explicitly promoted. However, these approaches do not lead to complex, language-like communication skills, and signals are tightly linked to environmental and/or sensory-motor states that are specific to the task for which communication was evolved. To move beyond current practice, we advocate an approach to emergent communication in robot swarms based on language games. Thanks to language games, previous studies showed that cultural self-organization-rather than biological evolution-can be responsible for the complexity and expressive power of language. We suggest that swarm robotics can be an ideal test-bed to advance research on the emergence of language-like communication. The latter can be key to provide robot swarms with additional skills to support self-organization and adaptivity, enabling the design of more complex collective behaviors.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7805664PMC
http://dx.doi.org/10.3389/frobt.2020.00012DOI Listing

Publication Analysis

Top Keywords

robot swarms
24
swarm robotics
8
communication
8
communication skills
8
communication robot
8
language-like communication
8
language games
8
robot
6
swarms
6
language
4

Similar Publications

The COVID-19 pandemic highlighted the urgent need for effective surface disinfection solutions, which has led to the use of mobile robots equipped with ultraviolet (UVC) lamps as a promising technology. This study aims to optimize the navigation of differential mobile robots equipped with UVC lamps to ensure maximum efficiency in disinfecting complex environments. Bio-inspired metaheuristic algorithms such as the gazelle optimization algorithm, whale optimization algorithm, bat optimization algorithm, and particle swarm optimization are applied.

View Article and Find Full Text PDF

The assembly of biological systems forms nonequilibrium patterns with different functionalities through molecular-level communication via stepwise sequential interaction and activation. The mimicking of this molecular signaling offers extensive opportunities to design self-assemblies of bioinspired synthetic nonequilibrium systems to develop molecular robots with active, adaptive, and autonomous behavior. Herein, the design and construction of biomolecular motor system, microtubule (MT)-kinesin based molecular swarm system, are reported through stepwise sequential interactions of DNA.

View Article and Find Full Text PDF

Programmable ultrasound-mediated swarms manipulation of bacteria-red blood cell microrobots for tumor-specific thrombosis and robust photothermal therapy.

Trends Biotechnol

December 2024

Guangdong Key Laboratory of Nanomedicine, CAS-HK Joint Lab of Biomaterials, Shenzhen Institute of Advanced Technology (SIAT), Chinese Academy of Sciences, Shenzhen 518055, PR China; Sino-Euro Center of Biomedicine and Health, Shenzhen 518024, PR China. Electronic address:

Despite the excellent advantages of biomicrorobots, such as autonomous navigation and targeting actuation, effective penetration and retention to deep lesion sites for effective therapy remains a longstanding challenge. Here, we present dual-engine cell microrobots, which we refer to as PR-robots, created by conjugating photosynthetic bacteria (PSB) with red blood cells (RBCs). The robots penetrate the tumor interior in swarms through combined hypoxic traction and ultrasound actuation (UA).

View Article and Find Full Text PDF

Swarm robots offer fascinating opportunities to perform complex tasks beyond the capabilities of individual machines. Just as a swarm of ants collectively moves large objects, similar functions can emerge within a group of robots through individual strategies based on local sensing. However, realizing collective functions with individually controlled microrobots is particularly challenging because of their micrometer size, large number of degrees of freedom, strong thermal noise relative to the propulsion speed, and complex physical coupling between neighboring microrobots.

View Article and Find Full Text PDF

The three performance indexes of the space robot, travel time, energy consumption, and smoothness, are the key to its important role in space exploration. Therefore, this paper proposes a multi-objective trajectory planning method for robots. Firstly, the kinematics and dynamics of the Puma560 robot are analyzed to lay the foundation for trajectory planning.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!