In recent years the field of soft robotics has gained a lot of interest both in academia and industry. In contrast to rigid robots, which are potentially very powerful and precise, soft robots are composed of compliant materials like gels or elastomers (Rich et al., 2018; Majidi, 2019). Their exclusive composition of nearly entirely soft materials offers the potential to extend the use of robotics to fields like healthcare (Burgner-Kahrs et al., 2015; Banerjee et al., 2018) and advance the emerging domain of cooperative human-machine interaction (Asbeck et al., 2014). One material class used frequently in soft robotics as actuators are electroactive polymers (EAPs). Especially dielectric elastomer actuators (DEAs) consisting of a thin elastomer membrane sandwiched between two compliant electrodes offer promising characteristics for actuator drives (Pelrine et al., 2000). Under an applied electric field, the resulting electrostatic pressure leads to a reduction in thickness and an expansion in the free spatial directions. The resulting expansion can reach strain levels of more than 300% (Bar-Cohen, 2004). This paper presents a bioinspired worm-like crawling robot based on DEAs with additional textile reinforcement in its silicone structures. A special focus is set on the developed cylindrical actuator segments that act as linear actuators.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7805930 | PMC |
http://dx.doi.org/10.3389/frobt.2020.00009 | DOI Listing |
Adv Sci (Weinh)
December 2024
State Key Laboratory of Fluid Power and Mechatronic Systems, School of Mechanical Engineering, Zhejiang University, Hangzhou, 310058, China.
Regarding the challenge of self-reconfiguration and self-amputation of soft robots, existing studies mainly focus on modular soft robots and connection methods between modules. Different from these studies, this study focus on the behavior of individual soft robots from a material perspective. Here, a kind of soft fibers, which consist of hot melt adhesive particles, magnetizable microparticles, and ferroferric oxide microparticles embedded in a thermoplastic polyurethane matrix are proposed.
View Article and Find Full Text PDFPhys Rev E
November 2024
PMMH, CNRS UMR 7636, ESPCI PSL, F-75005 Paris, France.
Taking inspiration from the crawling motion of biological cells on a substrate, we consider a physical model of self-propulsion where the spatiotemporal driving can involve both a mechanical actuation by active force couples and a chemical actuation through controlled mass turnover. When the material turnover is slow and the mechanical driving dominates, we find that the highest velocity at a given energetic cost is reached when the actuation takes the form of an active force configuration propagating as a traveling wave. As the rate of material turnover increases, and the chemical driving starts to dominate the mechanical one, such a peristalsis-type control progressively loses its efficacy, yielding to a standing-wave-type driving which involves an interplay between the mechanical and chemical actuation.
View Article and Find Full Text PDFMater Horiz
December 2024
Department of Mechanical Engineering, Stony Brook University, Stony Brook, NY 11794, USA.
Soft actuators hold great promise for applications in biomimetic robots, artificial muscles, and drug delivery systems due to their adaptability in diverse environments. A critical aspect of designing thermally responsive soft actuators is to achieve spatially programmable actuation under a global thermal stimulus. Different local actuation behaviors can be encoded in one actuator to enable complex morphing structures for different tasks.
View Article and Find Full Text PDFACS Appl Mater Interfaces
December 2024
School of Mechanical Engineering, Jiangsu University, Zhenjiang 212013, P. R. China.
Soft Robot
December 2024
Multiscale Medical Robotics Centre Ltd., The Chinese University of Hong Kong, Shatin, Hong Kong.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!