Electrically-Driven Soft Fluidic Actuators Combining Stretchable Pumps With Thin McKibben Muscles.

Front Robot AI

Soft Transducers Laboratory (LMTS), Institute of Microengineering, School of Engineering, École Polytechnique Fédérale de Lausanne (EPFL), Neuchâtel, Switzerland.

Published: January 2020

Soft wearable robots could provide support for lower and upper limbs, increase weight lifting ability, decrease energy required for walking and running, and even provide haptic feedback. However, to date most of wearable robots are based on electromagnetic motors or fluidic actuators, the former being rigid and bulky, the latter requiring external pumps or compressors, greatly limiting integration and portability. Here we describe a new class of electrically-driven soft fluidic muscles combining thin, fiber-like McKibben actuators with fully Stretchable Pumps. These pumps rely on ElectroHydroDynamics, a solid-state pumping mechanism that directly accelerates liquid molecules by means of an electric field. Requiring no moving parts, these pumps are silent and can be bent and stretched while operating. Each electrically-driven fluidic muscle consists of one Stretchable Pump and one thin McKibben actuator, resulting in a slender soft device weighing 2 g. We characterized the response of these devices, obtaining a blocked force of 0.84 N and a maximum stroke of 4 mm. Future work will focus on decreasing the response time and increasing the energy efficiency. Modular and straightforward to integrate in textiles, these electrically-driven fluidic muscles will enable soft smart clothing with multi-functional capabilities for human assistance and augmentation.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7806008PMC
http://dx.doi.org/10.3389/frobt.2019.00146DOI Listing

Publication Analysis

Top Keywords

electrically-driven soft
8
soft fluidic
8
fluidic actuators
8
stretchable pumps
8
thin mckibben
8
wearable robots
8
fluidic muscles
8
electrically-driven fluidic
8
fluidic
5
pumps
5

Similar Publications

System-level wearable electronics require to be flexible to ensure conformal contact with the skin, but they also need to integrate rigid and bulky functional components to achieve system-level functionality. As one of integration methods, folding integration offers simplified processing and enhanced functionality through rigid-soft region separation, but so far, it has mainly been applied to modality of electrical sensing and stimulation. This paper introduces a vialess heterogeneous skin patch with multi modalities that separates the soft region and strain-robust region through folded structure.

View Article and Find Full Text PDF

Small-scale soft robots, despite their potential for adaptability in unknown environments, often encounter performance constraints due to inherent limitations within soft actuators and compact bodies. To address this problem, we proposed a fast-moving soft robot driven by electroactive materials. The robot combines the advantages of dielectric elastomer actuators (DEAs) and shape memory alloy (SMA) spring actuators, enabling its high-performance multi-modal locomotion in a small and lightweight design.

View Article and Find Full Text PDF

Electrically Driven Deterministic Plasmon Light Sources Based on Arrays of Molecular Tunnel Junctions.

Nano Lett

August 2024

Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, Jiangsu 215123, P. R. China.

Surface plasmons excited via inelastic tunnelling have led to plasmon light sources with small footprints and ultrafast response speeds, which are favored by integrated optical circuits. Self-assembled monolayers of organic molecules function as highly tunable tunnel barriers with novel functions. However, limited by the low effective contact between the liquid metal electrode and the self-assembled monolayers, it is quite challenging to obtain molecular plasmon light sources with high density and uniform emission.

View Article and Find Full Text PDF

Living systems use dissipative processes to enable precise spatiotemporal control over various functions, including the transient modulation of the stiffness of tissues, which, however, is challenging to achieve in soft materials. Here, we report a new platform to program hydrogel films with tunable, time-dependent mechanical properties under out-of-equilibrium conditions, powered by electricity. We show that the lifetime of the transient network of a surface-confined hydrogel film can be effectively controlled by programming the generation of an electrochemically oxidized mediator in the presence of a chemical or photoreducing agent in solution.

View Article and Find Full Text PDF

Perceptual Soft End-Effectors for Future Unmanned Agriculture.

Sensors (Basel)

September 2023

College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China.

As consumers demand ever-higher quality standards for agricultural products, the inspection of such goods has become an integral component of the agricultural production process. Unfortunately, traditional testing methods necessitate the deployment of numerous bulky machines and cannot accurately determine the quality of produce prior to harvest. In recent years, with the advancement of soft robot technology, stretchable electronic technology, and material science, integrating flexible plant wearable sensors on soft end-effectors has been considered an attractive solution to these problems.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!