Ionic Actuators as Manipulators for Microscopy.

Front Robot AI

Intelligent Materials and Systems Lab, Institute of Technology, University of Tartu, Tartu, Estonia.

Published: December 2019

Non-destructive handling of soft biological samples at the cellular level is becoming increasingly relevant in life sciences. In particular, spatially dense arrangements of soft manipulators with the capability of monitoring via optical and electron microscopes promises new and exciting experimental techniques. The currently available manipulation technologies offer high positioning accuracy, yet these devices significantly grow in complexity in achieving compliance. We explore soft and compliant actuator material with a mechanical response similar to gel-like samples for perspective miniaturized manipulators. First, we demonstrate three techniques for rendering the bulk sheet-like electroactive material, the ionic and capacitive laminate (ICL), into a practical manipulator. We then show that these manipulators are also highly compatible with electron optics. Finally, we explore the performance of an ICL manipulator in handling a single large cell. Intrinsic compliance, miniature size, simple current-driven actuation, and negligible interference with the imaging technologies suggest a considerable perspective for the ICL in spatially dense arrays of compliant manipulators for microscopy.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7805677PMC
http://dx.doi.org/10.3389/frobt.2019.00140DOI Listing

Publication Analysis

Top Keywords

manipulators microscopy
8
spatially dense
8
manipulators
5
ionic actuators
4
actuators manipulators
4
microscopy non-destructive
4
non-destructive handling
4
handling soft
4
soft biological
4
biological samples
4

Similar Publications

ConspectusThe electronic properties of atomically thin van der Waals (vdW) materials can be precisely manipulated by vertically stacking them with a controlled offset (for example, a rotational offset─i.e., twist─between the layers, or a small difference in lattice constant) to generate moiré superlattices.

View Article and Find Full Text PDF

Heterogeneous catalysts have emerged as a potential key for closing the carbon cycle by converting carbon dioxide (CO) into value-added chemicals. In this work, we report a highly active and stable ceria (CeO)-based electronically tuned trimetallic catalyst for CO to CO conversion. A unique distribution of electron density between the defective ceria support and the trimetallic nanoparticles (of Ni, Cu, Zn) was established by creating the strong metal support interaction (SMSI) between them.

View Article and Find Full Text PDF

Modern-day applications demand onboard electricity generation that can be achieved using piezoelectric phenomena. Reducing the dimensionality of materials is a pathway to enhancing the piezoelectric properties. Transition-metal dichalcogenides have been shown to exhibit high piezoelectricity.

View Article and Find Full Text PDF

High-precision molecular manipulation techniques are used to control the distance between radical molecules on superconductors. Our results show that the molecules can host single electrons with a spin 1/2. By changing the distance between tip and sample, a quantum phase transition from the singlet to doublet ground state can be induced.

View Article and Find Full Text PDF

Mechanically Interlocked Molecular Rotors on Pb(100).

Nano Lett

January 2025

Institut für Experimentelle und Angewandte Physik, Christian-Albrechts-Universität, 24098 Kiel, Germany.

The mechanical coupling between molecules represents a promising route for the development of molecular machines. Constructing molecular gears requires easily rotatable and mutually interlocked pinions. Using scanning tunneling microscopy (STM), it is demonstrated that aluminum phthalocyanine (AlPc) molecules on Pb(100) exhibit these properties.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!