A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Unsupervised Phoneme and Word Discovery From Multiple Speakers Using Double Articulation Analyzer and Neural Network With Parametric Bias. | LitMetric

Unsupervised Phoneme and Word Discovery From Multiple Speakers Using Double Articulation Analyzer and Neural Network With Parametric Bias.

Front Robot AI

Emergent Systems Laboratory, College of Information Science and Engineering, Ritsumeikan University, Shiga, Japan.

Published: October 2019

This paper describes a new unsupervised machine-learning method for simultaneous phoneme and word discovery from multiple speakers. Phoneme and word discovery from multiple speakers is a more challenging problem than that from one speaker, because the speech signals from different speakers exhibit different acoustic features. The existing method, a nonparametric Bayesian double articulation analyzer (NPB-DAA) with deep sparse autoencoder (DSAE) only performed phoneme and word discovery from a single speaker. Extending NPB-DAA with DSAE to a multi-speaker scenario is, therefore, the research problem of this paper.This paper proposes the employment of a DSAE with parametric bias in the hidden layer (DSAE-PBHL) as a feature extractor for unsupervised phoneme and word discovery. DSAE-PBHL is designed to subtract speaker-dependent acoustic features and speaker-independent features by introducing parametric bias input to the DSAE hidden layer. An experiment demonstrated that DSAE-PBHL could subtract distributed representations of acoustic signals, enabling extraction based on the types of phonemes rather than the speakers. Another experiment demonstrated that a combination of NPB-DAA and DSAE-PBHL outperformed other available methods accomplishing phoneme and word discovery tasks involving speech signals with Japanese vowel sequences from multiple speakers.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7805918PMC
http://dx.doi.org/10.3389/frobt.2019.00092DOI Listing

Publication Analysis

Top Keywords

phoneme word
24
word discovery
24
multiple speakers
16
discovery multiple
12
parametric bias
12
unsupervised phoneme
8
double articulation
8
articulation analyzer
8
speech signals
8
acoustic features
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!