In recent years, a number of new products introduced to the global market combine intelligent robotics, artificial intelligence and smart interfaces to provide powerful tools to support professional decision making. However, while brain disease diagnosis from the brain scan images is supported by imaging robotics, the data analysis to form a medical diagnosis is performed solely by highly trained medical professionals. Recent advances in medical imaging techniques, artificial intelligence, machine learning and computer vision present new opportunities to build intelligent decision support tools to aid the diagnostic process, increase the disease detection accuracy, reduce error, automate the monitoring of patient's recovery, and discover new knowledge about the disease cause and its treatment. This article introduces the topic of medical diagnosis of brain diseases from the MRI based images. We describe existing, multi-modal imaging techniques of the brain's soft tissue and describe in detail how are the resulting images are analyzed by a radiologist to form a diagnosis. Several comparisons between the best results of classifying natural scenes and medical image analysis illustrate the challenges of applying existing image processing techniques to the medical image analysis domain. The survey of medical image processing methods also identified several knowledge gaps, the need for automation of image processing analysis, and the identification of the brain structures in the medical images that differentiate healthy tissue from a pathology. This survey is grounded in the cases of brain tumor analysis and the traumatic brain injury diagnoses, as these two case studies illustrate the vastly different approaches needed to define, extract, and synthesize meaningful information from multiple MRI image sets for a diagnosis. Finally, the article summarizes artificial intelligence frameworks that are built as multi-stage, hybrid, hierarchical information processing work-flows and the benefits of applying these models for medical diagnosis to build intelligent physician's aids with knowledge transparency, expert knowledge embedding, and increased analytical quality.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7805910 | PMC |
http://dx.doi.org/10.3389/frobt.2018.00120 | DOI Listing |
BMC Cancer
January 2025
Department of Radiology, Henan Provincial People's Hospital & Zhengzhou University People's Hospital, Zhengzhou, Henan, China.
Objectives: To construct a prediction model based on deep learning (DL) and radiomics features of diffusion weighted imaging (DWI), and clinical variables for evaluating TP53 mutations in endometrial cancer (EC).
Methods: DWI and clinical data from 155 EC patients were included in this study, consisting of 80 in the training set, 35 in the test set, and 40 in the external validation set. Radiomics features, convolutional neural network-based DL features, and clinical variables were analyzed.
Commun Chem
January 2025
Department of Materials Science and Metallurgical Engineering, Indian Institute of Technology Hyderabad, Kandi, Sangareddy, Telangana, India.
Liquid cell transmission electron microscopy (LCTEM) is a powerful technique for investigating crystallisation dynamics with nanometre spatial resolution. However, probing phenomena occurring in liquids while mixing two precursor solutions has proven extremely challenging, requiring sophisticated liquid cell designs. Here, we demonstrate that introducing and withdrawing solvents in sequence makes it possible to maintain optimal imaging conditions while mixing liquids in a commercial liquid cell.
View Article and Find Full Text PDFInt J Comput Assist Radiol Surg
January 2025
Computer Vision and Image Processing Lab., UofL, Louisville, KY, 40292, USA.
Purpose: This article introduces a novel deep learning approach to substantially improve the accuracy of colon segmentation even with limited data annotation, which enhances the overall effectiveness of the CT colonography pipeline in clinical settings.
Methods: The proposed approach integrates 3D contextual information via guided sequential episodic training in which a query CT slice is segmented by exploiting its previous labeled CT slice (i.e.
Sci Rep
January 2025
Department of Computer Engineering, Inha University, Incheon, Republic of Korea.
The most prevalent form of malignant tumors that originate in the brain are known as gliomas. In order to diagnose, treat, and identify risk factors, it is crucial to have precise and resilient segmentation of the tumors, along with an estimation of the patients' overall survival rate. Therefore, we have introduced a deep learning approach that employs a combination of MRI scans to accurately segment brain tumors and predict survival in patients with gliomas.
View Article and Find Full Text PDFSci Rep
January 2025
Civil and Transportation College, Beihua University, Jilin, China.
An improved concrete structure health monitoring method based on G-S-G is proposed, which fully combines an optimized Gray-Level Co-occurrence Matrix (GLCM) with an improved Self-Organizing Map (SOM) neural network to achieve accurate and real-time concrete structure health monitoring. First of all, in order to obtain a dynamic image of the crack damage region of interest (ROI) with clear contrast and obvious target, the image acquisition system and image optimization method are used to process the damaged image. Moreover, in order to realize the accurate location of crack damage, crack damage identification research based on GLCM-SOM effectively eliminates the interference of honeycomb and pothole damage on crack damage.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!