To maintain dairy cattle health and welfare at commensurable levels, analysis of the behaviors occurring between cows should be performed. This type of behavioral analysis is highly dependent on reliable and robust tracking of individuals, for it to be viable and applicable on-site. In this article, we introduce a novel method for continuous tracking and data-marker based identification of individual cows based on convolutional neural networks (CNNs). The methodology for data acquisition and overall implementation of tracking/identification is described. The Region of Interest (ROI) for the recordings was limited to a waiting area with free entrances to four automatic milking stations and a total size of 6 × 18 meters. There were 252 Swedish Holstein cows during the time of study that had access to the waiting area at a conventional dairy barn with varying conditions and illumination. Three Axis M3006-V cameras placed in the ceiling at 3.6 meters height and providing top-down view were used for recordings. The total amount of video data collected was 4 months, containing 500 million frames. To evaluate the system two 1-h recordings were chosen. The exit time and gate-id found by the tracker for each cow were compared with the exit times produced by the gates. In total there were 26 tracks considered, and 23 were correctly tracked. Given those 26 starting points, the tracker was able to maintain the correct position in a total of 101.29 min or 225 s in average per starting point/individual cow. Experiments indicate that a cow could be tracked close to 4 min before failure cases emerge and that cows could be successfully tracked for over 20 min in mildly-crowded (< 10 cows) scenes. The proposed system is a crucial stepping stone toward a fully automated tool for continuous monitoring of cows and their interactions with other individuals and the farm-building environment.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7805890 | PMC |
http://dx.doi.org/10.3389/frobt.2018.00107 | DOI Listing |
Physiol Rep
February 2025
Motion and Exercise Science, University of Stuttgart, Stuttgart, Germany.
The maintenance of an appropriate ratio of body fat to muscle mass is essential for the preservation of health and performance, as excessive body fat is associated with an increased risk of various diseases. Accurate body composition assessment requires precise segmentation of structures. In this study we developed a novel automatic machine learning approach for volumetric segmentation and quantitative assessment of MRI volumes and investigated the efficacy of using a machine learning algorithm to assess muscle, subcutaneous adipose tissue (SAT), and bone volume of the thigh before and after a strength training.
View Article and Find Full Text PDFJ Acoust Soc Am
January 2025
Urban Construction Center of Lucheng District of Wenzhou, Wenzhou, 325000, China.
The identification of vibration and reconstruction of sound fields of plate structures are important for understanding the vibroacoustic characteristics of complex structures. This paper presents a data-physics driven (DPD) model integrated with transfer learning (DPDT) for high-precision identification and reconstruction of vibration and noise radiation of plate structures. The model combines the Kirchhoff-Helmholtz integral equation with convolutional neural networks, leveraging physical information to reduce the need for extensive data.
View Article and Find Full Text PDFJ Chem Inf Model
January 2025
Department of Grain Science and Industry, Kansas State University, Manhattan, Kansas 66506, United States.
Cell-penetrating peptides (CPPs) are short peptides capable of penetrating cell membranes, making them valuable for drug delivery and intracellular targeting. Accurate prediction of CPPs can streamline experimental validation in the lab. This study aims to assess pretrained protein language models (pLMs) for their effectiveness in representing CPPs and develop a reliable model for CPP classification.
View Article and Find Full Text PDFComput Methods Biomech Biomed Engin
January 2025
School of Computer Science and Artificial Intelligence, Aliyun School of Big Data, Changzhou University, Changzhou, P.R. China.
Slow eye movements (SEMs) are a reliable physiological marker of drivers' sleep onset, often accompanied by EEG alpha wave attenuation. A parallel multimodal 1D convolutional neural network (PM-1D-CNN) model is proposed to classify SEMs. The model uses two parallel 1D-CNN blocks to extract features from EOG and EEG signals, which are then fused and fed into fully connected layers for classification.
View Article and Find Full Text PDFCureus
December 2024
Department of Orthodontics, School of Dentistry, Shahid Beheshti University of Medical Sciences, Tehran, IRN.
Background Orthodontic diagnostic workflows often rely on manual classification and archiving of large volumes of patient images, a process that is both time-consuming and prone to errors such as mislabeling and incomplete documentation. These challenges can compromise treatment accuracy and overall patient care. To address these issues, we propose an artificial intelligence (AI)-driven deep learning framework based on convolutional neural networks (CNNs) to automate the classification and archiving of orthodontic diagnostic images.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!