The present study describes a color-tunable imaging portfolio together with twelve novel coelenterazine (CTZ) analogues. The three groups of CTZ analogues create diverse hues of bioluminescence (BL) ranging from blue to far red with marine luciferases. We found that the hue completes the whole color palette in the visible region and shows red-shifted BL with a marine luciferase: for example, Renilla luciferase 8 (RLuc8) and Artificial Luciferase 16 (ALuc16) show 187 nm- and 105 nm-redshifted spectra, respectively, by simply replacing the substrate CTZ with 1d. The optical properties of the new CTZ analogues were investigated such as the kinetic parameters, dose dependency, and luciferase specificity. The 2-series CTZ analogues interestingly have specificity to ALucs and are completely dark with RLuc derivatives, and 3d is highly specific to only NanoLuc. We further determined the theoretical background of the red-shifted BL maximum wavelengths (λ) values according to the extended π conjugation of the CTZ backbone using Density Functional Theory (DFT) calculations. This color-tunable BL imaging system provides a useful multicolor imaging portfolio that efficiently images molecular events in mammalian cells.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7838199 | PMC |
http://dx.doi.org/10.1038/s41598-021-81430-1 | DOI Listing |
Bioconjug Chem
September 2024
Department of Engineering Science, Graduate School of Informatics and Engineering, The University of Electro-Communications, Chofu, Tokyo 182-8585, Japan.
Bioluminescence (BL) generated by luciferase-coelenterazine (CTZ) reactions is broadly employed as an optical readout in bioassays and in vivo molecular imaging. In this study, we demonstrate a systematic approach to elucidate the luciferase-CTZ binding chemistry with a full set of regioisomeric CTZ analogs, where all the functional groups were regiochemically modified. When the chemical structures were categorized into Groups 1-6, the even-numbered Groups (2, 4, and 6) of the CTZ analogs are found to be exceptionally bright with NanoLuc enzyme.
View Article and Find Full Text PDFDalton Trans
July 2024
Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Avenida da República (EAN), 2780-157 Oeiras, Portugal.
J Neurointerv Surg
August 2024
New England Center for Stroke Research, Department of Radiology, University of Massachusetts Chan Medical School, Worcester, Massachusetts, USA
Flow-diverting stents (FDs) for the treatment of cerebrovascular aneurysms are revolutionary. However, these devices require systemic dual antiplatelet therapy (DAPT) to reduce thromboembolic complications. Given the risk of ischemic complications as well as morbidity and contraindications associated with DAPT, demonstrating safety and efficacy for FDs either without DAPT or reducing the duration of DAPT is a priority.
View Article and Find Full Text PDFBBA Adv
December 2022
Department of Biotechnology and Life Science, Graduate School of Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Nakamachi, Koganei-shi, Tokyo 184-8588, Japan.
luciferase (GLuc 18.2kDa; 168 residues) is a marine copepod luciferase that emits a bright blue light when oxidizing coelenterazine (CTZ). It is a helical protein where two homologous sequential repeats form two anti-parallel bundles, each made of four helices.
View Article and Find Full Text PDFPhotochem Photobiol Sci
June 2023
Department of Engineering Science, Graduate School of Informatics and Engineering, The University of Electro-Communications, Chofu, Tokyo, 182-8585, Japan.
Bioluminescence (BL) is broadly used as an optical readout in bioassays and molecular imaging. In this study, the near-infrared (NIR) BL imaging systems were developed. The system was harnessed by prototype copepod luciferases, artificial luciferase 30 (ALuc30) and its miniaturized version picALuc, and were characterized with 17 kinds of coelenterazine (CTZ) analogues carrying bulky functional groups or cyanine 5 (Cy5).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!