The ribosome represents a promising avenue for synthetic biology, but its complexity and essentiality have hindered significant engineering efforts. Heterologous ribosomes, comprising rRNAs and r-proteins derived from different microorganisms, may offer opportunities for novel translational functions. Such heterologous ribosomes have previously been evaluated in E. coli via complementation of a genomic ribosome deficiency, but this method fails to guide the engineering of refractory ribosomes. Here, we implement orthogonal ribosome binding site (RBS):antiRBS pairs, in which engineered ribosomes are directed to researcher-defined transcripts, to inform requirements for heterologous ribosome functionality. We discover that optimized rRNA processing and supplementation with cognate r-proteins enhances heterologous ribosome function for rRNAs derived from organisms with ≥76.1% 16S rRNA identity to E. coli. Additionally, some heterologous ribosomes undergo reduced subunit exchange with E. coli-derived subunits. Cumulatively, this work provides a general framework for heterologous ribosome engineering in living cells.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7838251 | PMC |
http://dx.doi.org/10.1038/s41467-020-20759-z | DOI Listing |
J Integr Plant Biol
January 2025
Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City & Southwest University, College of Agronomy and Biotechnology, Southwest University, Chongqing, 400715, China.
The development of rapeseed with high resistance against the pathogen Sclerotinia sclerotiorum is impeded by the lack of effective resistance resources within host species. Unraveling the molecular basis of nonhost resistance (NHR) holds substantial value for resistance improvement in crops. In the present study, small RNA sequencing and transcriptome sequencing were carried out between rice (a nonhost species of S.
View Article and Find Full Text PDFMicrob Cell Fact
January 2025
Chair of Technical Biochemistry, Technische Universität Dresden, Bergstraße 66, 01069, Dresden, Germany.
Background: The biosynthesis of the natural product family of the polycyclic tetramate macrolactams (PoTeMs) employs an uncommon iterative polyketide synthase/non-ribosomal peptide synthetase (iPKS/NRPS). This machinery produces a universal PoTeM biosynthetic precursor that contains a tetramic acid moiety connected to two unsaturated polyene side chains. The enormous structural and hence functional diversity of PoTeMs is enabled by pathway-specific tailoring enzymes, particularly cyclization-catalyzing oxidases that process the polyene chains to form distinct ring systems, and further modifying enzymes.
View Article and Find Full Text PDFMicrob Cell Fact
December 2024
State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao, 266237, People's Republic of China.
Background: Ribosome engineering is a semi-empirical technique used to select antibiotic-resistant mutants that exhibit altered secondary metabolism. This method has been demonstrated to effectively select mutants with enhanced synthesis of natural products in many bacterial species, including actinomycetes. Myxobacteria are recognized as fascinating producers of natural active products.
View Article and Find Full Text PDFOrg Lett
January 2025
Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong SAR, China.
PF1163A () is a fungal metabolite that inhibits sterol-C4-methyl oxidase. In this study, we identified the biosynthetic gene cluster of and elucidated its biosynthetic pathway through heterologous expression experiments. Polyketide synthase-nonribosomal synthetase hybrid PfaA, which is responsible for the biosynthesis of PF1163A, harbors an unusual domain organization with tandem condensation (C) domains and a terminal condensation domain.
View Article and Find Full Text PDFGenes Genet Syst
December 2024
Laboratory of Chromosome Function and Regulation, Graduate School of Engineering, Kochi University of Technology.
Strict control of the expression levels of heterologously introduced protein-coding genes is important for the functional analysis of the protein of interest and its effective use in new situations. For this purpose, various promoters with different expression strengths, codon optimization, and expression stimulation by low molecular weight compounds are commonly used. However, methods to control protein expression levels by combining regulation of translation efficiency have not been studied in detail.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!