Phagocytosis by alveolar macrophages is the obligate first step in () infection, yet the mechanism underlying this process is incompletely understood. Here, we show that invasion relies on an intact sphingolipid biosynthetic pathway. Inhibition or knockout of early sphingolipid biosynthetic enzymes greatly reduces uptake across multiple phagocytic cell types without affecting other forms of endocytosis. While the phagocytic receptor dectin-1 undergoes normal clustering at the pathogen contact sites, sphingolipid biosynthetic mutant cells fail to segregate the regulatory phosphatase CD45 from the clustered receptors. Blocking sphingolipid production also impairs downstream activation of Rho GTPases, actin dynamics, and phosphoinositide turnover at the nascent phagocytic cup. Moreover, we found that production of sphingomyelin, not glycosphingolipids, is essential for uptake. Collectively, our data support a critical role of sphingomyelin biosynthesis in an early stage of infection and provide novel insights into the mechanism underlying phagocytic entry of this pathogen. () invades alveolar macrophages through phagocytosis to establish infection and cause disease. The molecular mechanisms underlying entry are still poorly understood. Here, we report that an intact sphingolipid biosynthetic pathway is essential for the uptake of by phagocytes. Disrupting sphingolipid production affects the segregation of the regulatory phosphatase CD45 from the nascent phagosome, a critical step in the progression of phagocytosis. We also show that blocking sphingolipid biosynthesis impairs activation of small GTPases and phosphoinositide turnover at the host-pathogen contact sites. Moreover, production of sphingomyelin, not glycosphingolipids, is critical for the phagocytic uptake of These data demonstrate a vital role for sphingomyelin biosynthesis in an early step of infection, defining a potential target for antimycobacterial therapeutics.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7858061 | PMC |
http://dx.doi.org/10.1128/mBio.03141-20 | DOI Listing |
J Ethnopharmacol
December 2024
Mudanjiang Normal University, Mudanjiang,157011, China.
Ethnopharmacological Relevance: Rheumatoid arthritis (RA) is a common autoimmune disease with a high clinical morbidity and leads to persistent chronic inflammation. Sanmiao wan is a classic formula for the treatment of RA, and the results of clinical and experimental studies have shown its therapeutic effect on RA. However, its mechanism of action remains unclear.
View Article and Find Full Text PDFSci Rep
December 2024
Bao Feng Key Laboratory of Genetics and Metabolism, Beijing, China.
Many lipid biomarkers of stroke have been identified, but the lipid metabolism in elderly patients with leukoaraiosis remains poorly understood. This study aims to explore lipid metabolic processes in stroke among leukoaraiosis patients, which could provide valuable insights for guiding future antithrombotic therapy. In a cohort of 215 individuals undergoing MRI, 13 stroke patients were matched with controls, and 48 stroke patients with leukoaraiosis were matched with 40 leukoaraiosis patients.
View Article and Find Full Text PDFAging Cell
December 2024
Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA.
Aging is accompanied by multiple molecular changes that contribute to aging associated pathologies, such as accumulation of cellular damage and mitochondrial dysfunction. Tissue metabolism can also change with age, in part, because mitochondria are central to cellular metabolism. Moreover, the cofactor NAD, which is reported to decline across multiple tissues during aging, plays a central role in metabolic pathways such as glycolysis, the tricarboxylic acid cycle, and the oxidative synthesis of nucleotides, amino acids, and lipids.
View Article and Find Full Text PDFCell Mol Biol Lett
December 2024
Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Add: No.324, Jingwu Road, Jinan, 250021, Shandong, China.
Background: Disorders of lipid metabolism are critical factors in the progression of chronic lymphocytic leukemia (CLL). However, the characteristics of lipid metabolism and related regulatory mechanisms of CLL remain unclear.
Methods: Hence, we identified altered metabolites and aberrant lipid metabolism pathways in patients with CLL by ultra-high-performance liquid chromatography-mass spectrometry-based non-targeted lipidomics.
Metabolites
December 2024
Laboratory of Quality & Safety Risk Assessment for Aquatic Products, Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Ministry of Agriculture and Rural Areas, Harbin 150070, China.
The salinization of the water environment worldwide is increasing, which has brought great challenges to the sustainability of fish farming of aquatic animals. Three NaHCO concentration groups (0 mmol/L, 20 mmol/L, and 60 mmol/L) were set up in this study to investigate growth and metabolic differences between diploid and triploid crucian carp under saline-alkaline stresses. This study utilized UPLC-QTOF/MS metabolomics to analyze significant metabolites and metabolic pathways in the serum of diploid and triploid crucian carp, exposing them to different NaHCO concentrations in saline-alkaline habitats, elucidating the mechanism of their metabolic differences.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!