We have fabricated ZnO nano rods by hydrothermal method and successively doped them with tin (Sn) using different concentrations of 25, 50, 75 and 100 mg of tin chloride. XRD of the fabricated structures showed that ZnO possess hexagonal wurtzite phase. Scanning electron microscopy (SEM) was used to explore the morphology and it shows nanorod like morphology for all samples and no considerable change in the structural features were found. The dimension of nanorod is 200 to 300 nm. The doped materials were then investigated for their photo catalytic degradation of environmental pollutant Rhodamine B. The performance of doped ZnO is compared with the pristine ZnO. Scanning electron microscopy (SEM) was used to explore the morphology and it shows nanorod like morphology for all samples and no considerable change in the structural features were found. The dimension of nanorod is 200 to 300 nm. XRD of the fabricated structures showed that ZnO possess hexagonal wurtzite phase. Photo catalytic activity of rhodamine B was investigated under UV light and a maximum degradation efficiency of 85% was obtained. The optical property reveals the reduction in band gap of upto 17.14% for 100 mg Sn doped ZnO. The degradation is followed by the pseudo order kinetics. The produced results are unique in terms of facile synthesis of Sn doped ZnO and excellent photo degradation efficiency, therefore these materials can be used for other environmental applications.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1166/jnn.2021.19106 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!