Electrical and Optical Properties of Silicone Oil/Carbon Nanotube Nanocomposites.

J Nanosci Nanotechnol

Departamento de Física, Universidade Federal do Paraná, Centro Politécnico, CP 19044, ZIP 81530-240, Curitiba (PR) Brazil.

Published: April 2021

The present work describes the preparation and the investigation of the room temperature electrical and optical properties of a series of liquid nanocomposites (lnC) prepared with different concentrations of multiwalled carbon nanotubes (MWCNT) in a variety of liquid matrices: glycerin, Vaseline, glucose, propylene glycol and silicone oil (SIO). Special attention is deserved to the SIO matrix, owing to its convenient electrical properties for our purposes. We verified that a small percent fraction of MWCNT dispersed along the SIO matrix is capable of improving the electrical conductivity of the matrix by orders of magnitude, indicating that the MWCNT strongly participates in the electrical conduction mechanism. Also, the application of an external electric field to this lnC resulted in large changes in the optical transmittance, that were interpreted as a consequence of the fieldinduced MWCNT alignment into the liquid matrix. The characteristics of such a new category of nanocomposite in the liquid state suggest further studies.

Download full-text PDF

Source
http://dx.doi.org/10.1166/jnn.2021.19073DOI Listing

Publication Analysis

Top Keywords

electrical optical
8
optical properties
8
sio matrix
8
electrical
5
properties silicone
4
silicone oil/carbon
4
oil/carbon nanotube
4
nanotube nanocomposites
4
nanocomposites work
4
work describes
4

Similar Publications

Context: This study systematically investigated the effects of single S-atom vacancy defects and composite defects (vacancy combined with doping) on the properties of MoS using density functional theory. The results revealed that N-doped S-vacancy MoS has the smallest composite defect formation energy, indicating its highest stability. Doping maintained the direct band gap characteristic, with shifts in the valence band top.

View Article and Find Full Text PDF

The advent of two-dimensional van der Waals materials is a frontier of condensed matter physics and quantum devices. However, characterizing such materials remains challenging due to the limitations of bulk material techniques, necessitating the development of specialized methods. Here, we investigate the superconducting properties of BiSrCaCuO flakes by integrating them with a hybrid superconducting microwave resonator.

View Article and Find Full Text PDF

The efficient isolation and molecular analysis of circulating tumor cells (CTCs) from whole blood at single-cell level are crucial for understanding tumor metastasis and developing personalized treatments. The viability of isolated cells is the key prerequisite for the downstream molecular analysis, especially for RNA sequencing. This study develops a laser-induced forward transfer -assisted microfiltration system (LIFT-AMFS) for high-viability CTC enrichment and retrieval from whole blood.

View Article and Find Full Text PDF

Electroluminescent (EL) devices consisting of a single metal-semiconductor contact and a gate effect structure have garnered significant attention in the field of perovskite light-emitting devices. This interest is largely due to the thermal stability of the active layer and the simplicity of the device structure. However, the application of these devices in large-area light-emitting applications is hindered by the inherently low carrier mobility in perovskite materials.

View Article and Find Full Text PDF

Response preparation is accomplished by gradual accumulation in neural activity until a threshold is reached. In humans, such a preparatory signal, referred to as the lateralized readiness potential, can be observed in the EEG over sensorimotor cortical areas before execution of a voluntary movement. Although well-described for manual movements, less is known about preparatory EEG potentials for saccadic eye movements in humans and nonhuman primates.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!